A new practical method for the flexural analysis of thin-walled symmetric cross-section box girders considering shear effect

2022 ◽  
Vol 171 ◽  
pp. 108710
Author(s):  
Maoding Zhou ◽  
Yuanhai Zhang ◽  
Pengzhen Lin ◽  
Zhaobo Zhang
2018 ◽  
Author(s):  
Miguel Abambres

Original Generalized Beam Theory (GBT) formulations for elastoplastic first and second order (postbuckling) analyses of thin-walled members are proposed, based on the J2 theory with associated flow rule, and valid for (i) arbitrary residual stress and geometric imperfection distributions, (ii) non-linear isotropic materials (e.g., carbon/stainless steel), and (iii) arbitrary deformation patterns (e.g., global, local, distortional, shear). The cross-section analysis is based on the formulation by Silva (2013), but adopts five types of nodal degrees of freedom (d.o.f.) – one of them (warping rotation) is an innovation of present work and allows the use of cubic polynomials (instead of linear functions) to approximate the warping profiles in each sub-plate. The formulations are validated by presenting various illustrative examples involving beams and columns characterized by several cross-section types (open, closed, (un) branched), materials (bi-linear or non-linear – e.g., stainless steel) and boundary conditions. The GBT results (equilibrium paths, stress/displacement distributions and collapse mechanisms) are validated by comparison with those obtained from shell finite element analyses. It is observed that the results are globally very similar with only 9% and 21% (1st and 2nd order) of the d.o.f. numbers required by the shell finite element models. Moreover, the GBT unique modal nature is highlighted by means of modal participation diagrams and amplitude functions, as well as analyses based on different deformation mode sets, providing an in-depth insight on the member behavioural mechanics in both elastic and inelastic regimes.


2021 ◽  
Vol 233 ◽  
pp. 111867
Author(s):  
Xiayuan Li ◽  
Shui Wan ◽  
Yuanhai Zhang ◽  
Maoding Zhou ◽  
Yilung Mo

2011 ◽  
Vol 368-373 ◽  
pp. 930-933
Author(s):  
Wei Hou ◽  
Shuan Hai He ◽  
Cui Juan Wang ◽  
Gang Zhang

Being aimed to deformation problem of pre-stressed concrete thin-walled multi-room box girders exposed to co-action of fire and load, on the basis of enthalpy conduction model and thermo-mechanics parameters, the finite element procedure was applied to analyze the deformation of three spans pre-stressed concrete thin-walled multi-room box girders exposed to co-action of fire and load. In conclusion, the deflection is obvious under action of the variation width and fire load model.


Sign in / Sign up

Export Citation Format

Share Document