Thermo-mechanical postbuckling analysis of sandwich cylindrical shells with functionally graded auxetic GRMMC core surrounded by an elastic medium

2022 ◽  
Vol 171 ◽  
pp. 108755
Author(s):  
Xiuhua Chen ◽  
Hui-Shen Shen ◽  
Y. Xiang
2013 ◽  
Vol 35 (4) ◽  
pp. 285-298 ◽  
Author(s):  
Dao Van Dung ◽  
Nguyen Thi Nga

In this paper, the nonlinear buckling and post-buckling of an eccentrically stiffened cylindrical shell made of functionally graded materials, surrounded by an elastic medium and subjected to mechanical compressive loads and external pressures are investigated by an analytical approach. The cylindrical shells are reinforced by longitudinal and circumferential stiffeners. The material properties of cylindrical shells are graded in the thickness direction according to a volume fraction power-law distribution. The nonlinear stability equations for stiffened cylindrical shells are derived by using the first order shear deformation theory and smeared stiffeners technique. Closed-form expressions for determining the buckling load and load-deflection curves are obtained. The effectiveness of stiffeners in enhancing the stability of cylindrical shells is shown. The effects of volume fraction indexes, material properties, geometrical parameters and foundation parameters are analyzed in detail.


Author(s):  
Hoang Van Tung

Buckling and postbuckling behaviors of nanocomposite cylindrical shells reinforced by single walled carbon nanotubes (SWCNTs), surrounded by an elastic medium, exposed to a thermal environment and subjected to uniform axial compression are investigated in this paper. Material properties of carbon nanotubes (CNTs) and isotropic matrix are assumed to be temperature dependent, and effective properties of nanocomposite are estimated by extended rule of mixture. The CNTs are embedded into matrix via uniform distribution (UD) or functionally graded (FG) distribution along the thickness direction. Governing equations are based on Donnell’s classical shell theory taking into account von Karman-Donnell nonlinear terms and interaction between the shell and surrounding elastic medium. Three-term form of deflection and stress function are assumed to satisfy simply supported boundary conditions and Galerkin method is applied to obtain load-deflection relation from which buckling and postbuckling behaviors are analyzed. Numerical examples are carried out to analyze the effects of CNT volume fraction and distribution types, geometrical ratios, environment temperature and surrounding elastic foundation on the buckling loads and postbuckling strength of CNTRC cylindrical shells.


2020 ◽  
Vol 10 (7) ◽  
pp. 2600
Author(s):  
Tho Hung Vu ◽  
Hoai Nam Vu ◽  
Thuy Dong Dang ◽  
Ngoc Ly Le ◽  
Thi Thanh Xuan Nguyen ◽  
...  

The present paper deals with a new analytical approach of nonlinear global buckling of spiral corrugated functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylindrical shells subjected to radial loads. The equilibrium equation system is formulated by using the Donnell shell theory with the von Karman’s nonlinearity and an improved homogenization model for spiral corrugated structure. The obtained governing equations can be used to research the nonlinear postbuckling of mentioned above structures. By using the Galerkin method and a three term solution of deflection, an approximated analytical solution for the nonlinear stability problem of cylindrical shells is performed. The linear critical buckling loads and postbuckling strength of shells under radial loads are numerically investigated. Effectiveness of spiral corrugation in enhancing the global stability of spiral corrugated FG-CNTRC cylindrical shells is investigated.


Sign in / Sign up

Export Citation Format

Share Document