Antimicrobial resistance patterns of Acinetobacter spp. of animal origin reveal high rate of multidrug resistance

2020 ◽  
Vol 245 ◽  
pp. 108702 ◽  
Author(s):  
Grazieli Maboni ◽  
Mauricio Seguel ◽  
Ana Lorton ◽  
Susan Sanchez
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mojisola C. Hosu ◽  
Sandeep D. Vasaikar ◽  
Grace E. Okuthe ◽  
Teke Apalata

AbstractThe proliferation of extended spectrum beta-lactamase (ESBL) producing Pseudomonas aeruginosa represent a major public health threat. In this study, we evaluated the antimicrobial resistance patterns of P. aeruginosa strains and characterized the ESBLs and Metallo- β-lactamases (MBL) produced. Strains of P. aeruginosa cultured from patients who attended Nelson Mandela Academic Hospital and other clinics in the four district municipalities of the Eastern Cape between August 2017 and May 2019 were identified; antimicrobial susceptibility testing was carried out against thirteen clinically relevant antibiotics using the BioMérieux VITEK 2 and confirmed by Beckman autoSCAN-4 System. Real-time PCR was done using Roche Light Cycler 2.0 to detect the presence of ESBLs; blaSHV, blaTEM and blaCTX-M genes; and MBLs; blaIMP, blaVIM. Strains of P. aeruginosa demonstrated resistance to wide-ranging clinically relevant antibiotics including piperacillin (64.2%), followed by aztreonam (57.8%), cefepime (51.5%), ceftazidime (51.0%), piperacillin/tazobactam (50.5%), and imipenem (46.6%). A total of 75 (36.8%) multidrug-resistant (MDR) strains were observed of the total pool of isolates. The blaTEM, blaSHV and blaCTX-M was detected in 79.3%, 69.5% and 31.7% isolates (n = 82), respectively. The blaIMP was detected in 1.25% while no blaVIM was detected in any of the strains tested. The study showed a high rate of MDR P. aeruginosa in our setting. The vast majority of these resistant strains carried blaTEM and blaSHV genes. Continuous monitoring of antimicrobial resistance and strict compliance towards infection prevention and control practices are the best defence against spread of MDR P. aeruginosa.


Author(s):  
Bekele Sharew ◽  
Feleke Moges ◽  
Gizachew Yismaw ◽  
Wondwossen Abebe ◽  
Surafal Fentaw ◽  
...  

Abstract Background Antimicrobial-resistant strains of Streptococcus pneumoniae have become one of the greatest challenges to global public health today and inappropriate use of antibiotics and high level of antibiotic use is probably the main factor driving the emergence of resistance worldwide. The aim of this study is, therefore, to assess the antimicrobial resistance profiles and multidrug resistance patterns of S. pneumoniae isolates from patients suspected of pneumococcal infections in Ethiopia. Methods A hospital-based prospective study was conducted from January 2018 to December 2019 at Addis Ababa city and Amhara National Region State Referral Hospitals. Antimicrobial resistance tests were performed from isolates of S. pneumoniae that were collected from pediatric and adult patients. Samples (cerebrospinal fluid, blood, sputum, eye discharge, ear discharge, and pleural and peritoneal fluids) from all collection sites were initially cultured on 5% sheep blood agar plates and incubated overnight at 37 °C in a 5% CO2 atmosphere. Streptococcus pneumoniae was identified and confirmed by typical colony morphology, alpha-hemolysis, Gram staining, optochin susceptibility, and bile solubility test. Drug resistance testing was performed using the E-test method according to recommendations of the Clinical and Laboratory Standards Institute. Results Of the 57 isolates, 17.5% were fully resistant to penicillin. The corresponding value for both cefotaxime and ceftriaxone was 1.8%. Resistance rates to erythromycin, clindamycin, tetracycline, chloramphenicol and trimethoprim-sulfamethoxazole were 59.6%, 17.5%, 38.6%, 17.5 and 24.6%, respectively. Multidrug resistance (MDR) was seen in 33.3% isolates. The most common pattern was co-resistance to penicillin, erythromycin, clindamycin, and tetracycline. Conclusions Most S. pneumoniae isolates were susceptible to ceftriaxone and cefotaxime. Penicillin has been used as a drug of choice for treating S. pneumoniae infection. However, antimicrobial resistance including multidrug resistance was observed to several commonly used antibiotics including penicillin. Hence, it is important to periodically monitor the antimicrobial resistance patterns to select empirical treatments for better management of pneumococcal infection.


2020 ◽  
Author(s):  
BEKELE SHAREW ◽  
Feleke Moges ◽  
Gizachew Yismaw ◽  
Wondiwossen Abebe ◽  
Surafal Fentaw ◽  
...  

Abstract Backgrounds: Streptococcus pneumoniae is one of the leading causes of bacterial meningitis and pneumoniae in elderly people and children. Antimicrobial resistant strains of Streptococcus pneumoniae has been detected in all parts of the world and become one of the greatest challenges to global public health today. The aim of this study is therefore, to assess the antimicrobial resistance profiles and multidrug resistance patterns of S. pneumoniae isolates from patients suspected for pneumococcal infections in Ethiopia. Methods: A hospital-based prospective study was conducted from 2018 to 2019 at Addis Ababa and Amhara region referral hospitals. Antimicrobial resistance tests were performed on 57 isolates of S. pneumoniae that were collected from pediatric and adult patients. Samples (cerebrospinal fluid, blood, sputum, eye discharge, ear discharge, pleural and peritoneal fluids) from all collection sites were initially cultured onto 5 % sheep blood agar plates and incubated overnight at 370C in 5% CO2 atmosphere. S. pneumoniae was identified and confirmed by typical colony morphology, alpha-hemolysis, Gram staining, optochin susceptibility and bile solubility test. Drug resistance testing was performed using E-test method according to recommendations of the Clinical and Laboratory Standards Institute.Results: Of the 57 isolates, 17.5% were fully resistant to penicillin. Corresponding value for both cefotaxime and ceftriaxone was 1.8%. Resistance rates to erythromycin, clindamycin, tetracycline, chloramphenicol and trimethoprim-sulfamethoxazole were 59.6%, 17.5%, 38.6%, 17.5% and 24.6%, respectively. Multidrug resistance (MDR) was seen in 33.3% isolates. The most common pattern was co-resistance to penicillin, erythromycin, clindamycin and tetracycline.Conclusions: Most bacterial isolates were susceptible to Ceftriaxone and Cefotaxime. Penicillin has been used as a drug of choice for treating S. pneumoniae infection. However, antimicrobial resistance including multidrug resistance was observed to a number of commonly used antibiotics including penicillin. Hence, it is important to periodically monitor the antibiotic resistance patterns to choose empirical treatments for better management of pneumococcal infection.


2007 ◽  
Vol 70 (6) ◽  
pp. 1502-1506 ◽  
Author(s):  
RAFAEL JESÚS ASTORGA MÁRQUEZ ◽  
AURORA ECHEITA SALABERRIA ◽  
ALFONSO MALDONADO GARCÍA ◽  
SILVIA VALDEZATE JIMENEZ ◽  
ALFONSO CARBONERO MARTINEZ ◽  
...  

The prevalence of and the antibiotic resistance shown by Salmonella isolated from pigs in Andalusia (southern Spain) is reported. Salmonella enterica was recovered from 40 (33%) of 121 sampled herds, and a total of 65 isolates were serotyped. The most common Salmonella serotypes were Typhimurium and Rissen (30.7% each); others included Derby (9.2%), Brandenburg (9.2%), Newport (7.7%), Bredeney (4.6%), Anatum (3.0%), Hadar (1.5%), and Goldcoast (1.5%). One strain (1.5%) belonging to the monophasic variant of the Typhimurium serotype (Salmonella 4,5,12:i:−) was also detected. Definitive phage type (DT) 104b was the most common Typhimurium phage type isolated. These Salmonella strains were resistant to various antimicrobial agents, including tetracycline (84.6%), streptomycin (69.2%), neomycin (63.0%), sulfonamides (61.5%), ampicillin (53.8%), and amoxicillin (53.8%). All isolates were fully susceptible to ceftriaxone, ciprofloxacin, and colistin. Thirty-nine strains (64%) resistant to four or more antimicrobial agents were defined as multidrug resistant. Multidrug resistance profiles were observed in Salmonella serotypes Typhimurium, Rissen, Brandenburg, Bredeney, a monophasic variant, Gold-coast, Hadar, and Anatum, with serotypes Typhimurium and Brandenburg showing the most complicated resistance patterns (resistant to ≥11 drugs).


2020 ◽  
Author(s):  
Mojisola C. Hosu ◽  
Sandeep D. Vasaikar ◽  
Grace E. Okuthe ◽  
teke apalata

Abstract Background: Pseudomonas aeruginosa is a common pathogen causing healthcare-associated infections most especially in critically ill and immunocompromised patients. This pathogen poses a public health threat due to its innate resistance to many antimicrobial agents and its ability to acquire new resistance mechanisms under pressure. Infections with Extended spectrum β-lactamases (ESBL)‑producing isolates result into outbreaks that lead to serious antibiotic management concerns with higher mortality and morbidity and significant economic causatives. In this study, we evaluated the antimicrobial resistance patterns and characterized genetically the ESBLs and Metallo- β-lactamases (MBL) produced by this pathogen. Methods: Isolates of P. aeruginosa cultured from patients who attended Nelson Mandela Academic Hospital and other clinics in the four district municipalities of the Eastern Cape between August 2017 and May 2019 were identified; and their antibiotic resistance patterns were tested against amikacin, aztreonam, cefepime, ceftazidime, ciprofloxacin, doripenem, gentamicin, imipenem, levofloxacin, meropenem, piperacillin, piperacillin/tazobactam and tobramycin using the bioMérieux VITEK® 2 and confirmed by Beckman autoSCAN-4 System. Real-time PCR was done using Roche Light Cycler 2.0 to detect the presence of ESBLs; blaSHV, blaTEM and blaCTX-M genes; and MBLs; blaIMP, blaVIM. Results: High antibiotic resistance in decreasing order was observed in piperacillin (64.2%), aztreonam (57.8%), cefepime (51.5%), ceftazidime (51.0%), piperacillin/tazobactam (50.5%), and imipenem (46.6%). A total of 75 (36.8%) multidrug resistant (MDR) isolates were observed of the total pool of isolates. The blaTEM, blaSHV and blaCTX-M was detected in 79.3%, 69.5% and 31.7% isolates (n=82), respectively. The blaIMP was detected in 1.25% while no blaVIM was detected in any of the isolates tested. Conclusions: The study showed a high rate of MDR P. aeruginosa in our setting. The vast majority of these resistant isolates carried blaTEM and blaSHV genes. Continuous monitoring of antimicrobial resistance and strict compliance towards infection prevention and control practices are the best defence against spread of MDR P. aeruginosa.


2018 ◽  
Vol 1 (2) ◽  
pp. 74-78
Author(s):  
Ram Prasad Adhikari ◽  
Subha Shrestha ◽  
Junu Richhinbung Rai ◽  
Ritu Amatya

Introduction: Multidrug resistance among Enterobacteriaceae is in increasing trend these days. The objective of this study was to determine the antibiogram of clinical isolates of Enterobacteriaceae with special reference to multidrug resistance and  extended spectrum beta-lactamases production.Materials and Methods: A descriptive cross sectional study was conducted over a period of six months (February -July, 2017) in the microbiology laboratory of Nepal Medical College Teaching Hospital, Kathmandu, Nepal. A total of 936 bacterial isolates of Enterobacteriaceae from clinical specimens were processed for antimicrobial susceptibility testing and screened for multidrug resistance. ESBL production was detected among potential isolates by combination disk diffusion test.Results: The rate of multidrug resistance and extended spectrum beta-lactamases production was 54.2% and 23.8% respectively. Of the total ESBL producers 92.4% were multidrug resistance. The rate of multidrug resistance and extended spectrum beta-lactamases production were higher in organisms isolated from clinical samples collected from inpatients. High rate of multidrug resistance and extended spectrum beta-lactamases production was seen in E. coli (54.4% & 27.7%), Klebsiella spp. (67.1% & 28.2%) and Citrobacter spp. (70.3% & 10.9%). The antimicrobial resistance rate was highest against ampicillin (76.7%) followed by cefixime (54. 0%), ceftazidime (51.5%), ceftriaxone (51.0%), cotrimoxazole (48.7%), ciprofloxacin (43.9%) and ofloxacin (41.1%).Conclusions:  Multidrug resistance is common among Enterobacteriaceae. These bacteria have high rate of resistance against commonly used groups of antibiotics like cephalosporins and quinolones. Continuous monitoring, surveillance of antimicrobial resistance, proper infection control and practices are important to combat with these issues.


2007 ◽  
Vol 70 (8) ◽  
pp. 1940-1944 ◽  
Author(s):  
MATI ROASTO ◽  
KADRIN JUHKAM ◽  
TERJE TAMME ◽  
ARI HÖRMAN ◽  
LIIDIA HÄKKINEN ◽  
...  

The development of antimicrobial resistance in Campylobacter jejuni and Campylobacter coli is a matter of increasing concern. Because campylobacteriosis is transmitted to humans usually via food of animal origin, the presence of antimicrobial-resistant campylobacters in broiler chickens has important public health implications. The aim of our study was to analyze resistance patterns of C. jejuni isolated from fecal samples collected at a large Estonian chicken farm, from cecal contents collected at slaughterhouses, and from meat samples collected at the retail establishments in 2005 and 2006. A total of 131 C. jejuni isolates were collected over a 13-month period and tested by the broth microdilution VetMIC method (National Veterinary Institute, Uppsala, Sweden) to determine the MICs of various antimicrobials. Resistance to one or more antimicrobials was detected in 104 (79.4%) of the 131 isolates. High proportions of the isolates were resistant to enrofloxacin (73.3%) and nalidixic acid (75.6%). Multidrug resistance (resistance to three or more unrelated antimicrobials) was detected in 36 isolates (27.5%), all of which were resistant to enrofloxacin. Multidrug resistance was significantly associated with enrofloxacin resistance (P < 0.01), and the use of enrofloxacin may select for multiresistant strains.


2020 ◽  
Author(s):  
Atsebaha Gebrekidan Kahsay

Abstract Background Salmonellosis remained the global public health problems of animals and humans. Consumption of animal food from infected animals or from the contamination of carcasses such as cattle, swine, and sheep and poultry are the main sources of non-Typhoidal Salmonella and the leading cause of zoonotic foodborne diseases. The eligibility criteria of this study has included publication in English, cross-sectional study, samples of food animal origin, antimicrobial sensitivity test methods. Google Scholar and PubMed have used to search the prevalence, incidence, distribution, antimicrobial resistance, animals and humans. Author, study area, study period, sample sources, number of animals, number of samples, positive isolates were used as search strategy. Results A total of 8.4% (564/6721) animal salmonellosis were identified from 11 studies in Ethiopia. The source of samples were pigs, cattle, poultry, and eggs. Five studies were selected for the analysis of prevalence and drug resistance of animal salmonellosis whereas six were found eligible for analysis of animal salmonellosis in serotype level and twenty nine serotypes were extracted having 354 isolates. Of the total 147(6.1%) isolates in five studies, ampicillin, streptomycin and tetracycline were resistant to 89 (60.5%), 70 (47.6%) and 64(43.5%) respectively. The resistant profile for ceftriaxone, gentamicin and ciprofloxacin were 20 (13.6%), 21 (12.9%) and 10 (6.8%), respectively. Twelve serotypes having 204 isolates have showed antimicrobial resistance. Six serotypes had multidrug resistance comprising 120 isolates. The predominant serotype that showed MDR (to three antibiotics) was S. Hadar 81 (67.5%) followed by S. Kentucky 22(18.3%). Conclusion The overall prevalence of animal salmonellosis in Ethiopia was 8.4% (564/6721).The source of samples for the assessment of the prevalence of animal salmonellosis in Ethiopia were pigs, cattle, poultry, and eggs. Of the total 147(6.1%) isolates in five studies, ampicillin, streptomycin and tetracycline were resistant to 89 (60.5%), 70 (47.6%) and 64(43.5%), respectively. A total of 29 serotypes comprising 354 isolates were revealed from six studies. Twelve serotypes having 204 isolates were showed antimicrobial resistance. Six serotypes showed multidrug resistance and the predominant serotype that showed MDR was S. Hadar 81 (67.5%) followed by S. Kentucky 22(18.3%)


Author(s):  
Yali Gong ◽  
Yuan Peng ◽  
Xiaoqiang Luo ◽  
Cheng Zhang ◽  
Yunlong Shi ◽  
...  

Infection is the leading cause of complications and deaths after burns. However, the difference in infection patterns between the burn intensive care unit (BICU) and burn common wards (BCW) have not been clearly investigated. The present study aimed to compare the infection profile, antimicrobial resistance, and their changing patterns in burn patients in BICU and BCW. Clinical samples were analyzed between January 1, 2011, and December 31, 2019, in the Institute of Burn Research in Southwest China. The patient information, pathogen distribution, sources, and antimicrobial resistance were retrospectively collected. A total of 3457 and 4219 strains were detected in BICU and BCW, respectively. Wound secretions accounted for 86.6% and 44.9% in BCW and BICU, respectively. Compared with samples in BCW, samples in BICU had more fungi (11.8% vs. 8.1%), more Gram-negative bacteria (60.0% vs. 50.8%), and less Gram-positive bacteria (28.2% vs. 41.1%). Acinetobacter baumannii were the most common pathogen in BICU, compared with Staphylococcus aureus in BCW. S. aureus was the most frequent pathogen in wound secretions and tissues from both BICU and BCW. However, A. baumannii were the first in blood, sputum, and catheter samples from BICU. Overall, the multidrug-resistance (MDR) rate was higher in BICU than in BCW. However, the gap between BICU and BCW gradually shortened from 2011 to 2019. The prevalence of MDR A. baumannii and Klebsiella pneumonia significantly increased, especially in BCW. Furthermore, Carbapenem resistance among K. pneumoniae significantly increased in BICU (4.5% in 2011 vs. 40% in 2019) and BCW (0 in 2011 vs. 40% in 2019). However, the percentage of MDR P. aeruginosa sharply dropped from 85.7% to 24.5% in BICU. The incidence of MRSA was significantly higher in BICU than in BCW (94.2% vs. 71.0%) and stayed at a high level in BICU (89.5% to 96.3%). C. tropicalis and C. albicans were the two most frequent fungi. No resistance to Amphotericin B was detected. Our study shows that the infection profile is different between BICU and BCW, and multidrug resistance is more serious in BICU than BCW. Therefore, different infection-control strategies should be emphasized in different burn populations.


2021 ◽  
Author(s):  
Leinyuy Jude Fonbah ◽  
Innocent Mbulli Ali ◽  
Ousenu Karimo ◽  
Christopher B. Tume

Abstract Background: The emergence of multidrug-resistant foodborne pathogens of animal origin is a growing concern. In particular, antibiotic resistance in Enterobacteriaceae of clinical importance has been on the rise. Identifying and monitoring resistance patterns in residual intestinal microflora in poultry are of great significance in the containment of antimicrobial resistance. The current study aimed to detect Enterobacteriaceae among broiler chicken and determine key antibiotic resistance patterns in isolates from poultry chicken in the West Region of Cameroon.Results: 275 cloacal swabs were collected from 28 poultry farms in 11 locations in 5 out of the 8 Divisions in the West Region. All samples tested positive for Enterobacteriaceae with an average of 3 different colonies per sample. 394 isolates were obtained belonging to 12 different Genera of Enterobacteriaceae distributed as 81 (20.56 %) Escherichia spp, 74 (18.78 %) Salmonella spp, 39 (9.90 %) Klebsiella spp, 38 (9.64 %) Proteus spp, 34 (8.63 %) Citrobacter spp, 31 (7.87 %) Enterobacter spp, 28 (7.87%) Providencia spp, 19 (4.82%) Hafnia spp, 15 (3.30 %) Shigella spp, 14 (3.55 %) Raoultella spp, 13 (3.30 %) Yersinia spp and 8 (1.78 %) Morgenella spp. Antibiotic susceptibility testing on isolates showed the following overall resistance to the various antibiotics tested: amoxicillin 345 (87.8%), amoxicillin/clavulanic acid 227 (57.8%), ceftriaxone 79 (20.1%), cefotaxime 65 (16.5%), imipenem 16 (4.1%), gentamicin 58 (14.5%), amikacin 12 (3.1%), ciprofloxacin 142 (37.1%), levofloxacin 124 (33.1%) and doxycycline 380 (96.7). 217 (55.1 %) were resistant to at least one antibiotic class of choice against Enterobacteriaceae, 80 (20.3 %) resistant to at least one cephalosporin, 164 (41.62 %) resistant to at least one quinolone and 66 (16.75 %) resistant to at least one aminoglycoside.173 (44.0%) showed MDR and 84 (21.32 %) were ESBL producers. Poor sanitation increased Enterobacteriaceae carriage, antibiotic misuse and long periods of rearing increased the risk of developing antimicrobial resistance, MDR and ESBL production. Conclusion: Poor sanitation in poultries caused high Enterobacteriaceae carriage in subjects. This high co-infection coupled with antibiotic abuse caused high prevalence of resistance, MDR and ESBL production. These outcomes showed relatively uniform distribution across the area of study.


Sign in / Sign up

Export Citation Format

Share Document