How to design an area-based prioritization of biogas production from organic municipal solid waste? Evidence from Thailand

2022 ◽  
Vol 138 ◽  
pp. 243-252
Aksornchan Chaianong ◽  
Chanathip Pharino
2018 ◽  
Vol 77 (10) ◽  
pp. 2426-2435
D. Di Trapani ◽  
G. Mannina ◽  
S. Nicosia ◽  
G. Viviani

Abstract Municipal solid waste (MSW) landfills now represent one of the most important issues related to the waste management cycle. Knowledge of biogas production is a key aspect for the proper exploitation of this energy source, even in the post-closure period. In the present study, a simple mathematical model was proposed for the simulation of biogas production. The model is based on first-order biodegradation kinetics and also takes into account the temperature variation in time and depth as well as landfill settlement. The model was applied to an operating landfill located in Sicily, in Italy, and the first results obtained are promising. Indeed, the results showed a good fit between measured and simulated data. Based on these promising results, the model can also be considered a useful tool for landfill operators for a reliable estimate of the duration of the post-closure period.

V. Mozhiarasi ◽  
P. M. Benish Rose ◽  
S. M. Elavaar Kuzhali ◽  
S. Kanyapushpanjali ◽  
D. Weichgrebe ◽  

2020 ◽  
Vol 180 ◽  
pp. 02019 ◽  
Marzhan Temirbekova ◽  
Madina Aliyarova ◽  
Iliya Iliev ◽  
Aliya Yelemanova ◽  
Saule Sagintayeva

This paper justifies the efficiency of the biogas collection and utilization at the MSW (municipal solid waste) landfill in Almaty with the installation of several modern biogas plants. The optimal mode of processes occurring in a biogas plant is determined by computer generated simulations. Mathematical model parameters were identified to describe biochemical processes occurring in a biogas plant. Two approaches are used to resolve the mathematical model: the finite-difference method for solving the system of differential equations and simulation modeling by using the Any Logic package. A program is written in the algorithmic language C ++. Numerous calculations were carried out, the results of which are presented in curves and their qualitative picture is consistent with the ongoing processes. The created computer program allows to make a preliminary forecast of anaerobic fermentation occurring in the bioreactor depending on volume of the substrate, methane microorganisms and temperature conditions.

Javier Rodrigo-Ilarri ◽  
María-Elena Rodrigo-Clavero ◽  
Eduardo Cassiraga

This paper introduces BIOLEACH, a new decision support model for the real-time management of municipal solid waste bioreactor landfills that allows estimating the leachate and biogas production. Leachate production is estimated using an adaptation of the water balance equation which considers every hydrological component and the water consumed by anaerobic organic matter degradation to create biogas and the leachate recirculation flows pumped from the landfill pond under a bioreactor management scheme. Landfill gas production is estimated considering the leachate formation process as a coupled effect through the production or consumption of water. BIOLEACH uses waste production and climate data at monthly scale and computes leachate production accounting for the actual conditions inside the waste mass. Biogas production is computed simultaneously, considering the available water to adjust the chemical organic matter biodegradation. BIOLEACH is a valuable bioreactor managing tool as it allows calculating the recirculation volume of leachate that ensures optimal moisture conditions inside the waste mass and therefore maximizing biogas production. As an illustrative example of a BIOLEACH application, the model has been applied to a real landfill located in Murcia Region (Spain) showing the economic and environmental benefits derived from leachate superficial recirculation.

1998 ◽  
Vol 38 (2) ◽  
pp. 127-132 ◽  
N. Hamzawi ◽  
K. J. Kennedy ◽  
D. D. McLean

This study evaluated the technical feasibility of the anaerobic co-digestion process in the context of typical North American solid waste. Using biological activity tests, an optimal mixture was identified with 25% organic fraction of municipal solid waste (OFMSW) and 75% sewage sludge (65% raw primary sludge (RAW), 35% thickened WAS (TWAS)) based on biogas production. Also, based on the rate of biogas production, the most anaerobically biodegradable components of the OFMSW were paper and grass. The TWAS and the newspaper were found to be the least biodegradable components. Lab-scale testing indicated that alkaline pretreatment increased the biodegradability of the sewage sludge/OFMSW mixture the most, as compared to the untreated control. Thermochemically pretreated feedstocks inhibited anaerobic biodegradability as compared to the control, whereas the anaerobic biodegradability of thermally pretreated feed was not found to be significantly different from that of the control. Empirical models were developed based on alkaline dose, feed total solids concentration and particle size for biogas production and removal of TS and VS. All three experimental factors were found to be significant with respect to the response variables studied.

Sign in / Sign up

Export Citation Format

Share Document