Integral approach for the evaluation of poultry manure, compost, and digestate: Amendment characterization, mineralization, and effects on soil and intensive crops

2022 ◽  
Vol 139 ◽  
pp. 124-135
Author(s):  
Pedro Federico Rizzo ◽  
Brian Jonathan Young ◽  
Natalia Pin Viso ◽  
Jazmín Carbajal ◽  
Laura Elizabeth Martínez ◽  
...  
2004 ◽  
Vol 67 (7) ◽  
pp. 1365-1370 ◽  
Author(s):  
MAHBUB ISLAM ◽  
MICHAEL P. DOYLE ◽  
SHARAD C. PHATAK ◽  
PATRICIA MILLNER ◽  
XIUPING JIANG

Outbreaks of enterohemorrhagic Escherichia coli O157:H7 infections associated with lettuce and other leaf crops have occurred with increasing frequency in recent years. Contaminated manure and polluted irrigation water are probable vehicles for the pathogen in many outbreaks. In this study, the occurrence and persistence of E. coli O157:H7 in soil fertilized with contaminated poultry or bovine manure composts or treated with contaminated irrigation water and on lettuce and parsley grown on these soils under natural environmental conditions was determined. Twenty-five plots, each 1.8 by 4.6 m, were used for each crop, with five treatments (one without compost, three with each of the three composts, and one without compost but treated with contaminated water) and five replication plots for each treatment. Three different types of compost, PM-5 (poultry manure compost), 338 (dairy manure compost), and NVIRO-4 (alkaline-stabilized dairy manure compost), and irrigation water were inoculated with an avirulent strain of E. coli O157:H7. Pathogen concentrations were 107 CFU/g of compost and 105 CFU/ml of water. Contaminated compost was applied to soil in the field as a strip at 4.5 metric tons per hectare on the day before lettuce and parsley seedlings were transplanted in late October 2002. Contaminated irrigation water was applied only once on the plants as a treatment in five plots for each crop at the rate of 2 liters per plot 3 weeks after the seedlings were transplanted. E. coli O157:H7 persisted for 154 to 217 days in soils amended with contaminated composts and was detected on lettuce and parsley for up to 77 and 177 days, respectively, after seedlings were planted. Very little difference was observed in E. coli O157:H7 persistence based on compost type alone. E. coli O157:H7 persisted longer (by >60 days) in soil covered with parsley plants than in soil from lettuce plots, which were bare after lettuce was harvested. In all cases, E. coli O157:H7 in soil, regardless of source or crop type, persisted for >5 months after application of contaminated compost or irrigation water.


2020 ◽  
Vol 8 (3) ◽  
pp. 257
Author(s):  
Layana Dorado Correia Belinato ◽  
Elston Elston Kraft ◽  
Rafael Solivo ◽  
Patrícia Aparecida de Oliveira ◽  
Evandro Spagnollo ◽  
...  

The global demand for protein led to the increase of animal production in the world and, mainly, in Brazil. As a consequence, there was an increase in the amount of waste produced, and the need to seek alternatives for its sustainable use. Microbial indicators and multivariate tools can assist in the proper measurement of the impact of the use of this waste on the soil. This study aimed to: 1) measure the effect of the application of organic fertilizers of animal origin in the no-tillage system on soil microbial attributes and its relationship with maize yield; 2) evaluate the potential of separation/discrimination of the different sources of organic fertilizers based on yield and soil microbial and chemical-physical attributes, using multivariate tools. Treatments consisted of annual application of: poultry manure (PM), liquid swine manure (LSM), poultry manure compost (PMC), swine manure compost (SMC), cattle manure compost (CMC) and control (C), without fertilization. Organic fertilizers promoted higher values of microbial biomass (MB) and MBC:TOC ratio in treatments CMC, SMC and PM in the first sampling season (E1), followed by PM, LSM and PMC in the second sampling period (E2). The data show that PM promoted microbial growth in both seasons, with higher metabolic efficiency increasing maize yield by 30% in relation to the treatment with the second highest production, PMC. Multivariate analysis techniques prove to be important tools to study soil quality indicators in systems which use organic fertilizers.


2006 ◽  
Vol 86 (1) ◽  
pp. 21-33 ◽  
Author(s):  
A. M. Hammermeister ◽  
T. Astatkie ◽  
E. A. Jeliazkova ◽  
P. R. Warman ◽  
R. C. Martin

Organic sources of nutrients are increasingly being used in horticultural and certified organic production. The nutrient-supplying potentials of poultry manure compost (PM), feather meal (FM), alfalfa meal (AA) and vermicastings (VC) and an unamended control were measured in a growth room experiment. The amendments were applied at rates equivalent to 200, 400 and 800 kg total N ha-1 to a soil of low fertility. Nitrogen supply rates and concentrations were measured over 6 mo in unvegetated pots using PRS™ probes and KCl extraction, respectively. Biomass of lettuce (Lactuca sativa L.) and orchardgrass (Dactylis glomerata L.) and N uptake of orchardgrass were measured. Repeated measures analysis revealed significant amendment × rate × time interaction effects for N supply rate and concentration. Of total N applied, available N was 50 to 70% in the FM and PM treatments, 10 to 40% in the AA treatments, and 10% in the VC treatments. High rates of FM and PM were toxic to lettuce but produced good orchard grass yields. VC was safe for lettuce but low N availability limited long-term orchardgrass growth. Higher application rates did not result in corresponding increases in nutrient supply. Consideration should be given to balancing the ratio of available nutrients in amendments with plant requirements. Key words: Apparent nitrogen recovery, plant N uptake, feather meal, alfalfa meal, vermicastings, poultry manure compost


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 248 ◽  
Author(s):  
Keiji Jindo ◽  
Miguel A. Sánchez-Monedero ◽  
Kazuhiro Matsumoto ◽  
Tomonori Sonoki

Using biochar as a bulking agent in composting is gradually becoming popular for the minimization of nitrogen losses during the process and the improvement in compost quality. While a wide range of different biochar doses is applied, not much clear information was available about the optimum ratio. This study presents the impact of adding a low dose (2% v/v) of slow-pyrolysis oak biochar (Quercus serrate Murray), into poultry manure on the recalcitrant characteristic of humified organic matter. The influence in the chemical composition of humic-like substance was evaluated in poultry manure compost prepared with (PM+B) and without biochar (PM). The shift to slightly more stable chemical composition was shown in humic acid-like (HA) and fulvic acid-like (FA) extracted from PM+B compost, by increasing the proportion of aromatic carbon groups and thermal stability measured by thermogravimetry. We conclude that the addition of 2% biochar moderately enhances the recalcitrance of humified organic carbon and this could be feasible for the implementation of the biochar use in composting since only a small amount is required.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 261 ◽  
Author(s):  
Fernando Fornes ◽  
Luisa Liu-Xu ◽  
Antonio Lidón ◽  
María Sánchez-García ◽  
María Luz Cayuela ◽  
...  

Compost represents a sustainable alternative for peat (P) replacement in soilless plant cultivation, but its use can be limited by several inadequate physical and physicochemical properties. Biochar can alleviate some of the limitations of compost for its use as growth media by improving the physical properties, decreasing salinity and making the phytotoxic compounds unavailable for plants. We studied the physical and physicochemical properties of holm oak biochar (B), poultry manure compost (PMC), poultry manure composted with biochar (PMBC), a commercial peat (P) and multiple combinations of these materials as growth media, and their effect on the rooting and growth of rosemary. PMBC and PMC showed similar physical and physicochemical properties as growing media, and they both were phytotoxic when used in a rate above 50% (by volume) in the growing medium. However, when used at proportion of 25%, PMBC was less phytotoxic than PMC and enhanced the percentage of rosemary cutting rooting. The incorporation of B in the growing medium instead of P (either at 50% or 75% in volume) increased the stability of the growing media and the percentage of rooted cuttings, but it did not affect plant growth significantly. Our results demonstrate the potential of substituting peat by a combination of poultry manure compost and biochar for the formulation of growth media.


2021 ◽  
Vol 9 (8) ◽  
pp. 1561
Author(s):  
Taylor Readyhough ◽  
Deborah A. Neher ◽  
Tucker Andrews

Manure-derived organic amendments are a cost-effective tool that provide many potential benefits to plant and soil health including fertility, water retention, and disease suppression. A greenhouse experiment was conducted to evaluate how dairy manure compost (DMC), dairy manure compost-derived vermicompost (VC), and dehydrated poultry manure pellets (PP) impact the tripartite relationship among plant growth, soil physiochemical properties, and microbial community composition. Of tomato plants with manure-derived fertilizers amendments, only VC led to vigorous growth through the duration of the experiment, whereas DMC had mixed impacts on plant growth and PP was detrimental. Organic amendments increased soil porosity and soil water holding capacity, but delayed plant maturation and decreased plant biomass. Composition of bacterial communities were affected more by organic amendment than fungal communities in all microhabitats. Composition of communities outside roots (bulk soil, rhizosphere, rhizoplane) contrasted those within roots (endosphere). Distinct microbial communities were detected for each treatment, with an abundance of Massilia, Chryseolinea, Scedosporium, and Acinetobacter distinguishing the control, vermicompost, dairy manure compost, and dehydrated poultry manure pellet treatments, respectively. This study suggests that plant growth is affected by the application of organic amendments not only because of the soil microbial communities introduced, but also due to a synergistic effect on the physical soil environment. Furthermore, there is a strong interaction between root growth and the spatial heterogeneity of soil and root-associated microbial communities.


Sign in / Sign up

Export Citation Format

Share Document