El Niño and children: Medium-term effects of early-life weather shocks on cognitive and health outcomes

2022 ◽  
Vol 150 ◽  
pp. 105690
Author(s):  
Arturo Aguilar ◽  
Marta Vicarelli
2016 ◽  
Vol 2016 (1) ◽  
Author(s):  
Sutyajeet Soneja* ◽  
Chengsheng Jiang ◽  
Jared Fisher ◽  
David Blythe ◽  
Clifford Mitchell ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255931
Author(s):  
Jennifer Beseres Pollack ◽  
Terence A. Palmer ◽  
Abby E. Williams

Human activities and regional-scale climate variability drive changes in the ecology of coastal and marine ecosystems. Ecological restoration has emerged as a best-management practice to combat habitat degradation and restore lost ecological functions. However, relatively short project monitoring timeframes have limited our understanding of the effects of interannual climate cycles on water quality and restoration dynamics. We collected measurements on a 23-ha oyster reef constructed in the Gulf of Mexico to determine the relationship between El Niño Southern Oscillation (ENSO)-driven climate variability and local salinity patterns, and to evaluate the effects of this climate variability and salinity on oyster population dynamics and faunal community composition over a medium-term (five-year) timeframe. The role of ENSO-driven climate variability on local salinity patterns (primarily from changes in precipitation and evaporation) and faunal dynamics was investigated using the Oceanic Niño Index (ONI). Salinity was negatively correlated with ONI with an approximately 4-month lag. Higher ONI values (El Niño periods) were followed by reductions in salinity, increases in oyster recruitment and density, and reductions in resident motile fauna density and species richness. Lower ONI values (La Niña periods) had higher and less variable salinities, and higher areal coverage of restoration substrates by large oysters. ENSO-driven salinity reductions in the second year after reef construction coincided with a shift in resident motile faunal community composition that was maintained despite a second strong salinity reduction in year 5. Our results indicate that it is important to expand the typical monitoring timeframes to at least five years so that resource managers and restoration practitioners can better understand how both short-term environmental variability and longer-term climate cycles can affect the outcomes of restoration actions.


2020 ◽  
Vol 55 (4) ◽  
pp. 1-14
Author(s):  
K. Legal ◽  
P. Plantin
Keyword(s):  
El Niño ◽  

2020 ◽  
Vol 54 (3) ◽  
pp. 1-15
Author(s):  
K. Legal ◽  
P. Plantin
Keyword(s):  
El Niño ◽  

Author(s):  
C. Thévenin-Lemoine ◽  
F. Accadbled ◽  
J. Sales de Gauzy
Keyword(s):  
El Niño ◽  

Sign in / Sign up

Export Citation Format

Share Document