Modeling the Percutaneous Absorption of Solvent-Deposited Solids Over a Wide Dose Range

Author(s):  
Fang Yu ◽  
Kevin Tonnis ◽  
Lijing Xu ◽  
Joanna Jaworska ◽  
Gerald B. Kasting
Author(s):  
Shawn Williams ◽  
Xiaodong Zhang ◽  
Susan Lamm ◽  
Jack Van’t Hof

The Scanning Transmission X-ray Microscope (STXM) is well suited for investigating metaphase chromosome structure. The absorption cross-section of soft x-rays having energies between the carbon and oxygen K edges (284 - 531 eV) is 6 - 9.5 times greater for organic specimens than for water, which permits one to examine unstained, wet biological specimens with resolution superior to that attainable using visible light. The attenuation length of the x-rays is suitable for imaging micron thick specimens without sectioning. This large difference in cross-section yields good specimen contrast, so that fewer soft x-rays than electrons are required to image wet biological specimens at a given resolution. But most imaging techniques delivering better resolution than visible light produce radiation damage. Soft x-rays are known to be very effective in damaging biological specimens. The STXM is constructed to minimize specimen dose, but it is important to measure the actual damage induced as a function of dose in order to determine the dose range within which radiation damage does not compromise image quality.


1992 ◽  
Vol 68 (01) ◽  
pp. 069-073 ◽  
Author(s):  
J J J van Giezen ◽  
J W C M Jansen

SummaryDexamethasone decreases the fibrinolytic activity in cultured medium of several cell types by an induction of PAI-1 synthesis. As a result of this enhanced PAI-1 synthesis a prothrombotic state is expected in patients treated with dexamethasone. However, such a prothrombotic state is not reported as a major adverse effect. We have studied the effects of dexamethasone (dose range: 0.1–3.0 mg/kg) on the fibrinolytic system of rats after a 5 day pretreatment period. It appeared that dexamethasone dose dependently decreased the fibrinolytic activity (a dose of 1 mg/kg showed a reduction of about 40%). This reduced fibrinolytic activity could be functionally translated into an increased thrombus size as measured with a venous thrombosis model: thrombus size was increased by 50% with 1 mg/kg dexamethasone. No effects could be measured on the coagulation system, but it appeared that ex-vivo measured platelet aggregation was dose dependently inhibited by dexamethasone treatment. This effect resulted in-vivo in prolonged obstruction times as measured with a modified aorta-loop model. These results indicate that the expected prothrombotic state due to a diminished fibrinolytic activity caused by dexamethasone is counterbalanced by an inhibition of platelet aggregation.


1985 ◽  
Vol 54 (03) ◽  
pp. 630-634 ◽  
Author(s):  
J Dawes ◽  
C V Prowse ◽  
D D Pepper

SummaryThe competitive binding assay described will specifically and accurately measure concentrations of administered heparin in biological fluids with a sensitivity of 60 ng ml-1. Neither endogenous glycosaminoglycans, nor plasma proteins such as ATIII and PF4 interfere in the assay. Semi-synthetic highly sulphated heparinoids and LMW heparin can also be measured. Using this assay heparin clearance followed simple first-order kinetics over the dose range 100-5,000 units, but the half-life was strongly dose-dependent. There was good correlation with heparin activity measurements by APTT and anti-Xa clotting assays. Plasma concentrations were measurable for at least 5 h following subcutaneous injection of 10,000 units of heparin. Excretion in the urine could be followed after all but the lowest intravenous dose. This assay, used in conjunction with measurements of heparin anticoagulant activity, will be valuable in the elucidation of mechanisms of action of heparin and the heparinoids, and in the assessment and management of problems related to heparin therapy.


1973 ◽  
Vol 35 (4) ◽  
pp. 472-476 ◽  
Author(s):  
Shuhei SHIMAO ◽  
Yasuyuki SHIMIZU ◽  
Motoyuki MIHARA ◽  
Toshiaki USUI ◽  
Hiroko KAWAMOTO

Author(s):  
N. N. Loy ◽  
S. N. Gulina

The effect of presowing seed treatment on various concentrations of dicarboxylic (organic) acids on the sowing characteristics of spring barley has been studied. Seeds were treated with organic acids obtained by exposing cuttings to the radiation with a dose of 100 kGy and consequent hydrolysis, in concentrations: 1•10-7 %; 1•10-9; 1•10-11; 1•10-13 and 1•10-15 % on a laboratory rotary machine RVO-64 for one day before laying for germination. Distilled water was used for the control case. The rate of application of the working solution calculated as 10 liters / ton of seeds. Seeds were germinated in filter paper rolls in accordance with GOST 12038-84 requirements. The temperature was maintained at +24 ° C in the thermostat where the glasses with rolls were placed. For determination of germinative power and laboratory germination the sprouted seeds were evaluated after three and seven days, respectively. In laboratory experiments it was established that the treatment of barley seeds of varieties Zazersky 85, Nur and Vladimir with organic acids (OK) in different concentrations had both a stimulating and a negative effect. On the Zazersky 85 variety, in variants with acid concentrations of 1•10-9 and 1•10-11, an increase in germination energy (EP) by 2-4% and a significant decrease (by 3-4%) of laboratory germination (LV) of barley seeds were noted. On the Nur variety, the increase in EP was observed at 4% (concentration 1•10-11), LV and seed growth force (CPC) by 2-7% at a concentration of 1•10-7 and in the dose range 1•10-11 - 1•10-14 compared to the control values. On the grade of Vladimir, an increase in EP, LV, and CPC was found to increase by 1-6% at concentrations OK 1•10-7 and 1•10-13. It was shown that the treatment of seeds with acids led to an increase in the length of the germ in all studied varieties (by 3-9%) and dry biomass of 7-day-old seedlings - by 3-6%. Consequently, the treatment of seeds with a mixture of dicarboxylic acids has a stimulating effect on the sowing quality of spring barley.


Author(s):  
Tahmeena Khan ◽  
Rumana Ahmad ◽  
Iqbal Azad ◽  
Saman Raza ◽  
Seema Joshi ◽  
...  

Background: Mixed ligand-metal complexes are efficient chelating agents because of flexible donor ability. Mixed ligand complexes containing hetero atoms sulphur, nitrogen and oxygen have been probed for their biological significance. Objective: Nine mixed ligand-metal complexes of 2-(butan-2-ylidene) hydrazinecarbothioamide (2-butanone thiosemicarbazone) and pyridine, bipyridine or 2-picoline as co-ligands were synthesized with Cu, Fe and Zn. The complexes were tested against MDA-MB231 (MDA) and A549 cell lines. Antibacterial activity was tested against S. aureus and E. coli. The drug character of the complexes was evaluated on several parameters viz. physicochemical properties, bioactivity scores, toxicity assessment and absorption, distribution, metabolism, excretion and toxicity (ADMET) profile assessment using various automated softwares. Molecular docking of the complexes was also performed with two target proteins. Method and Results: The mixed ligand-metal complexes were synthesized by condensation reaction for 4-5 h. The characterization was done by elemental analysis, 1H-NMR, FT-IR, molar conductance and UV spectroscopies. Molecular docking was performed against ribonucleotide reductase (RR) and topoisomerase II (topo II). [Cu(C5H11N3S)(py)2(CH3COO)2], [Zn(C5H11N3S)(bpy)(SO4)] and [Zn(C5H11N3S)(2-pic)2(SO4)] displayed the lowest binding energies with respect to RR. Against topo II [Cu(C5H11N3S)(py)2(CH3COO)2], [Cu(C5H11N3S)(bpy)(CH3COO)2] and [Zn(C5H11N3S)(2-pic)2(SO4)] had the lowest energies. The druglikness assessment was done using Leadlikeness and Lipinski’s rules. Against topo II [Cu(C5H11N3S)(py)2(CH3COO)2], [Cu(C5H11N3S)(bpy)(CH3COO)2] and [Zn(C5H11N3S)(2-pic)2(SO4)] had the lowest energies. Not more than two violations were obtained in case of each filtering rule showing drug like character of the mixed ligand complexes. Several of the complexes exhibited positive bioactivity scores and almost all the complexes were predicted to be safe with no hazardous effects. All the complexes were predicted to have no mutagenic character as shown by the Ames test [Zn(C5H11N3S)(py)2(SO4)] showed potential activity against MDA. [Co(C5H11N3S(bpy)(Cl)2] was also active against MDA. [Cu(C5H11N3S)(2-pic)2(CH3COO)2] also showed 27.6% cell viability at 100 µM against MDA. Against A549 [Co(C5H11N3S)(py)2(Cl)2], [Cu(C5H11N3S)(py)2(CH3COO)2] and [Co(C5H11N3S(bpy)(Cl)2] were active. [Co(C5H11N3S)(bpy)(Cl)2] and [Cu(C5H11N3S)(2-pic)2(CH3COO)2] were active against S. aureus. [Co(C5H11N3S)(2-pic)2(Cl)2] and [Zn(C5H11N3S)(2-pic)2(SO4)] were active at lower concentrations against S.aureus. Against E. coli, [Zn(C5H11N3S)(2-pic)2(SO4)] showed activity at 18-20mg dose range.


1973 ◽  
Vol 24 (1) ◽  
pp. 162-164 ◽  
Author(s):  
I.F.H. Purchase ◽  
M. Steyn

Sign in / Sign up

Export Citation Format

Share Document