scholarly journals Protocol for reading and imaging live-cell PKA activity using ExRai-AKAR2

2022 ◽  
Vol 3 (1) ◽  
pp. 101071
Author(s):  
Jin-fan Zhang ◽  
Sohum Mehta ◽  
Jin Zhang
Keyword(s):  
2020 ◽  
Author(s):  
Lei Wang ◽  
Louis Riel ◽  
Bekim Bajrami ◽  
Bin Deng ◽  
Amy Howell ◽  
...  

The novel use of the α-methylene-β-lactone (MeLac) moiety as a warhead of multiple electrophilic sites is reported. In this study, we demonstrate that a MeLac-alkyne is a competent covalent probe and reacts with diverse proteins in live cells. Proteomics analysis of affinity-enriched samples identifies probe-reacted proteins, resolves their modified peptides/residues, and thus characterizes probe-protein reactions. Unique methods are developed to evaluate confidence in the identification of the reacted proteins and modified peptides. Tandem mass spectra of the peptides reveal that MeLac reacts with nucleophilic cysteine, serine, lysine, threonine, and tyrosine residues, through either Michael addition or acyl addition. A peptide-centric proteomics platform, using MeLac-alkyne as the measurement probe, successfully analyzes the Orlistat selectivity in live HT-29 cells. MeLac is a versatile warhead demonstrating enormous potential to expedite the development of covalent probes and inhibitors in interrogating protein (re)activity. MeLac-empowered platforms in chemical proteomics are widely adaptable for measuring the live-cell action of reactive molecules.


Sign in / Sign up

Export Citation Format

Share Document