scholarly journals A protocol to investigate cellular and circuit mechanisms generating sharp wave ripple oscillations in rodent basolateral amygdala using ex vivo slices

2022 ◽  
Vol 3 (1) ◽  
pp. 101085
Madhusoothanan B. Perumal ◽  
Pankaj Sah
2021 ◽  
Kay Tye ◽  
Gillian Matthews ◽  
Mackenzie Lemieux ◽  
Elizabeth Brewer ◽  
Raymundo Miranda ◽  

Abstract Affiliative social connections facilitate well-being and survival in numerous species. Engaging in social interactions requires positive and negative motivational drive, elicited through coordinated activity across neural circuits. However, the identity, interconnectivity, and functional encoding of social information within these circuits remains poorly understood. Here, we focused on downstream projections of dorsal raphe nucleus (DRN) dopamine neurons (DRNDAT), which we previously implicated in ‘negative drive’-induced social motivation. We show that three prominent DRNDAT projections – to the bed nucleus of the stria terminalis (BNST), central amygdala (CeA), and posterior basolateral amygdala (BLP) – play separable roles in behavior, despite substantial collateralization. Photoactivation of the DRNDAT-CeA projection promoted social behavior and photoactivation of the DRNDAT-BNST projection promoted exploratory behavior, while the DRNDAT-BLP projection supported place avoidance, suggesting a negative affective state. Downstream regions showed diverse, region-specific, receptor expression, poising DRNDAT neurons to act through dopamine, neuropeptide, and glutamate transmission. Furthermore, we show ex vivo that the effect of DRNDAT photostimulation on downstream neuron excitability was predicted by baseline cell properties, suggesting cell-type-specific modulation. Collectively, these data indicate that DRNDAT neurons may bias behavior via precise modulation of cellular activity in broadly-distributed target structures.

2019 ◽  
Wataru Ito ◽  
Brendon Fusco ◽  
Alexei Morozov

AbstractNatural brain adaptations often involve changes in synaptic strength. The artificial manipulations can help investigate the role of synaptic strength in a specific brain circuit not only in various physiological phenomena like correlated neuronal firing and oscillations but also in behaviors. High and low-frequency stimulation at presynaptic sites has been used widely to induce long-term potentiation (LTP) and depression (LTD), respectively. This approach is effective in many brain areas, but not in the basolateral amygdala (BLA), because the robust local GABAergic tone inside the BLA restricts synaptic plasticity. Here, we identified the subclass of GABAergic neurons that gate LTP in the BLA afferents from the dorsomedial prefrontal cortex (dmPFC). Chemogenetic suppression of somatostatin-positive interneurons (Sst-INs) enabled the ex vivo LTP by high-frequency stimulation of the afferent, but the suppression of parvalbumin-positive interneurons (PV-INs) did not. Moreover, optogenetic suppression of Sst-INs with Arch also enabled LTP of the dmPFC-BLA synapses both ex vivo and in vivo. These findings reveal that Sst-INs but not PV-INs gate LTP in the dmPFC-BLA pathway and provide a method for artificial synaptic facilitation in BLA.

2021 ◽  
Céline Nicolas ◽  
Anes Ju ◽  
Yifan Wu ◽  
Hazim Eldirdiri ◽  
Sebastien Delcasso ◽  

Abstract The response of the insular cortex (IC) and amygdala to stimuli of positive and negative valence were found to be altered in patients with anxiety disorders. However, the coding properties of neurons controlling anxiety and valence remain unknown. Combining photometry recordings and chemogenetics in mice, we uncover the anxiogenic control of projection neurons in the anterior IC (aIC), independently of their projection target. Using viral tracing and ex vivo electrophysiology, we characterize the monosynaptic aIC to the basolateral amygdala (BLA) connection, and employed projection-specific optogenetics, to reveal anxiogenic properties of aIC-BLA neurons in anxiety-related behaviors. Finally, using photometry recordings, we identified that aIC-BLA neurons are active in anxiogenic spaces, and in response to aversive stimuli. Together, these findings show that negative valence, as well as anxiety-related information and behaviors, are encoded by aICBLA glutamatergic neurons, providing a starting point to understand how alterations of this pathway contribute to psychiatric disorders.

2021 ◽  
Kasra Manoocheri ◽  
Adam G Carter

Connections from the basolateral amygdala (BLA) to medial prefrontal cortex (PFC) regulate memory and emotion and become disrupted in neuropsychiatric disorders. We hypothesized that the diverse roles attributed to interactions between the BLA and PFC reflect multiple circuits nested within a wider network. To assess these circuits, we first used anatomy to show that the rostral BLA (rBLA) and caudal BLA (cBLA) differentially project to prelimbic (PL) and infralimbic (IL) subregions of the PFC, respectively. We then combined in vivo silicon probe recordings and optogenetics to show that rBLA primarily engages PL, whereas cBLA mainly influences IL. Using ex vivo whole-cell recordings and optogenetics, we then assessed which neuronal subtypes are targeted, showing that rBLA preferentially drives layer 2 (L2) cortico-amygdalar (CA) neurons in PL, whereas cBLA drives layer 5 (L5) pyramidal tract (PT) cells in IL. Lastly, we used soma-tagged optogenetics to explore the local circuits linking superficial and deep layers of PL, showing how rBLA can also impact L5 PT cells. Together, our findings delineate how subregions of the BLA target distinct networks within the PFC to have different influence on prefrontal output.

eLife ◽  
2016 ◽  
Vol 5 ◽  
Joyonna Carrie Gamble-George ◽  
Rita Baldi ◽  
Lindsay Halladay ◽  
Adrina Kocharian ◽  
Nolan Hartley ◽  

Mood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice. We found that these behavioral effects were associated with a dampening of neuronal excitability in the basolateral amygdala (BLA) ex vivo and in vivo, and were mediated by small-conductance calcium-activated potassium (SK) channel and CB1 cannabinoid receptor activation. Taken together, these data provide further support for the potential utility of SSCIs, as well as traditional COX-2 inhibitors, as novel treatment approaches for stress-related psychiatric disorders.

Cell Reports ◽  
2021 ◽  
Vol 35 (6) ◽  
pp. 109106
Madhusoothanan B. Perumal ◽  
Benjamin Latimer ◽  
Li Xu ◽  
Peter Stratton ◽  
Satish Nair ◽  

2020 ◽  
Simon D. Fisher ◽  
Lachlan A. Ferguson ◽  
Jesus Bertran-Gonzalez ◽  
Bernard W. Balleine

SummaryThe acquisition of goal-directed action requires the encoding of specific action-outcome associations involving plasticity in the posterior dorsomedial striatum (pDMS). We first investigated the relative involvement of the major inputs to the pDMS argued to be involved in this learning-related plasticity, from prelimbic prefrontal cortex (PL) and from the basolateral amygdala (BLA). Using ex vivo optogenetic stimulation of PL or BLA terminals in pDMS, we found that goal-directed learning potentiated the PL input to direct pathway spiny projection neurons (dSPNs) bilaterally but not to indirect pathway neurons (iSPNs). In contrast, learning-related plasticity was not observed in the direct BLA-pDMS pathway. Using toxicogenetics, we ablated BLA projections to either pDMS or PL and found that only the latter was necessary for goal-directed learning. Importantly, transient inactivation of the BLA during goal-directed learning prevented the PL-pDMS potentiation of dSPNs, establishing that the BLA input to the PL is necessary for the corticostriatal plasticity underlying goal-directed learning.

2021 ◽  
Keith A Misquitta ◽  
Sierra A Codeluppi ◽  
Jaime K Knoch ◽  
Yashika Bansal ◽  
Toshi Tomoda ◽  

Background: The amygdala (AMY) is a key brain region of the limbic system that plays a critical role in emotion processing and stress response. Functional magnetic resonance imaging (fMRI) studies identified abnormal AMY activation in psychiatric illnesses including major depressive disorder (MDD). Stress exposure is a major precipitating factor of MDD episodes which are associated with AMY hyperactivity. Preclinical studies using of pharmacologic, opto- and chemogenetic approaches to activate AMY neurons have consistently demonstrated that acute AMY hyperactivation induces anxiety-like behaviors in mice. However, it remains unknown if chronic hyperactivation of the amygdala (cHOA) is sufficient to induce chronic stress-like deficits or is a susceptibility factor for chronic stress-induced behavioral, volumetric and synaptic deficits. Methods: Using designer receptor exclusively activated by designer drug (DREADD) approach, basolateral amygdala (BLA) neurons of Camk2a-cre mice infected with a virus driving the expression of the Gq-coupled DREADD were activated with clozapine-N-oxide (in drink water for 5 weeks). Mice were then exposed to chronic restraint stress (CRS; 1X/day for 1hr) for 2 weeks. All mice were behaviorally assessed in the Phenotyper (PT), and sucrose consumption tests (SCT) each week and in the novelty supressed feeding (NSF, once at the end of the experiment). Animals were then perfused for ex vivo-MRI and puncta density analysis. Results: We found that mice with cHOA displayed a progressive increase in baseline anxiety-like deficits in the PT test and slightly more marked deficits following CRS compared to controls, but not statistically different from animals subjected to CRS alone. Also, cHOA did not exacerbate CRS effect in the NSF. No significant cAH effect was found in the SCT before or after CRS. MRI analysis revealed no statistical charges between groups, while increased synaptic puncta density was found in cHOA mice subjected to CRS compared to cHOA or CRS alone. Conclusion: We demonstrate that cAH is sufficient to induce anxiety and may exacerbate CRS effects on anxiety and synaptic measures. Results also suggest that cHOA was not sufficient to induce depressive-like behavior and was not a vulnerability factor for stress-induced depressive-like behavior in mice. Altogether, our findings imply that a strong causal link between AMY hyperactivity and elevated anxiety, but not depressive-like behaviors and provide critical information to clinical research focused on using AMY activity level as a biomarker in stress-related illnesses.

Sign in / Sign up

Export Citation Format

Share Document