De novo full length transcriptome analysis of Arachis glabrata provides insights into gene expression dynamics in response to biotic and abiotic stresses

Genomics ◽  
2021 ◽  
Vol 113 (3) ◽  
pp. 1579-1588
Author(s):  
Chuanzhi Zhao ◽  
Liangqiong He ◽  
Han Xia ◽  
Ximeng Zhou ◽  
Yun Geng ◽  
...  
Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 624 ◽  
Author(s):  
Vicente Montejano-Ramírez ◽  
Ernesto García-Pineda ◽  
Eduardo Valencia-Cantero

Plants face a variety of biotic and abiotic stresses including attack by microbial phytopathogens and nutrient deficiencies. Some bacterial volatile organic compounds (VOCs) activate defense and iron-deficiency responses in plants. To establish a relationship between defense and iron deficiency through VOCs, we identified key genes in the defense and iron-deprivation responses of the legume model Medicago truncatula and evaluated the effect of the rhizobacterial VOC N,N-dimethylhexadecylamine (DMHDA) on the gene expression in these pathways by RT-qPCR. DMHDA increased M. truncatula growth 1.5-fold under both iron-sufficient and iron-deficient conditions compared with untreated plants, whereas salicylic acid and jasmonic acid decreased growth. Iron-deficiency induced iron uptake and defense gene expression. Moreover, the effect was greater in combination with DMHDA. Salicylic acid, Pseudomonas syringae, jasmonic acid, and Botrytis cinerea had inhibitory effects on growth and iron response gene expression but activated defense genes. Taken together, our results showed that the VOC DMHDA activates defense and iron-deprivation pathways while inducing a growth promoting effect unlike conventional phytohormones, highlighting that DMHDA does not mimic jasmonic acid but induces an alternative pathway. This is a novel aspect in the complex interactions between biotic and abiotic stresses.


Trees ◽  
2016 ◽  
Vol 30 (5) ◽  
pp. 1647-1655 ◽  
Author(s):  
Guodong Rao ◽  
Yanfei Zeng ◽  
Jinkai Sui ◽  
Jianguo Zhang

2018 ◽  
Author(s):  
Komivi Dossa ◽  
Marie Ali Mmadi ◽  
Rong Zhou ◽  
Qi Zhou ◽  
Mei Yang ◽  
...  

AbstractDNA methylation is a heritable epigenetic mechanism that participates in gene regulation under abiotic stresses in plants. Sesame (Sesamum indicum L.) is typically considered a drought-tolerant crop but highly susceptible to waterlogging, a property attributed to its presumed origin in Africa or India. Understanding DNA methylation patterns in sesame under drought and waterlogging conditions can provide insights into the regulatory mechanisms underlying its contrasting responses to these principal abiotic stresses. Here, we combined Methylation-Sensitive Amplified Polymorphism and transcriptome analyses to profile cytosine methylation patterns, gene expression alteration, and their interplay in drought-tolerant and waterlogging-tolerant sesame genotypes under control, stress and recovery conditions. Our data showed that drought stress strongly induced de novo methylation (DNM) whereas most of the loci were demethylated (DM) during the recovery phase. In contrast, waterlogging decreased the level of methylation under stress but during the recovery phase, both DM and DNM were concomitantly deployed. In both stresses, the differentially expressed genes (DEGs) were highly correlated with the methylation patterns. We observed that DM was associated with the up-regulation of the DEGs while DNM was correlated with the down-regulation of the DEGs. In addition, we sequenced 44 differentially methylated regions of which 90% overlapped with the promoters and coding sequences of the DEGs. Altogether, we demonstrated that sesame has divergent epigenetic programs that respond to drought and waterlogging stresses. Our results also highlighted the possible interplay among DNA methylation and gene expression, which may modulate the contrasting responses to drought and waterlogging in sesame.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ricardo Pérez-Sánchez ◽  
Ángel Carnero-Morán ◽  
Beatriz Soriano ◽  
Carlos Llorens ◽  
Ana Oleaga

Abstract Background The argasid tick Ornithodoros erraticus is the main vector of tick-borne human relapsing fever (TBRF) and African swine fever (ASF) in the Mediterranean Basin. Tick salivary proteins secreted to the host at the feeding interface play critical roles for tick feeding and may contribute to host infection by tick-borne pathogens; accordingly, these proteins represent interesting antigen targets for the development of vaccines aimed at the control and prevention of tick infestations and tick-borne diseases. Methods To identify these proteins, the transcriptome of the salivary glands of O. erraticus was de novo assembled and the salivary gene expression dynamics assessed throughout the trophogonic cycle using Illumina sequencing. The genes differentially upregulated after feeding were selected and discussed as potential antigen candidates for tick vaccines. Results Transcriptome assembly resulted in 22,007 transcripts and 18,961 annotated transcripts, which represent 86.15% of annotation success. Most salivary gene expression took place during the first 7 days after feeding (2088 upregulated transcripts), while only a few genes (122 upregulated transcripts) were differentially expressed from day 7 post-feeding onwards. The protein families more abundantly overrepresented after feeding were lipocalins, acid and basic tail proteins, proteases (particularly metalloproteases), protease inhibitors, secreted phospholipases A2, 5′-nucleotidases/apyrases and heme-binding vitellogenin-like proteins. All of them are functionally related to blood ingestion and regulation of host defensive responses, so they can be interesting candidate protective antigens for vaccines. Conclusions The O. erraticus sialotranscriptome contains thousands of protein coding sequences—many of them belonging to large conserved multigene protein families—and shows a complexity and functional redundancy similar to those observed in the sialomes of other argasid and ixodid tick species. This high functional redundancy emphasises the need for developing multiantigenic tick vaccines to reach full protection. This research provides a set of promising candidate antigens for the development of vaccines for the control of O. erraticus infestations and prevention of tick-borne diseases of public and veterinary health relevance, such as TBRF and ASF. Additionally, this transcriptome constitutes a valuable reference database for proteomics studies of the saliva and salivary glands of O. erraticus.


Sign in / Sign up

Export Citation Format

Share Document