Explainable 1-D convolutional neural network for damage detection using Lamb wave

2022 ◽  
Vol 164 ◽  
pp. 108220
Author(s):  
Pushpa Pandey ◽  
Akshay Rai ◽  
Mira Mitra
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Sergio V. Farias ◽  
Osamu Saotome ◽  
Haroldo F. Campos Velho ◽  
Elcio H. Shiguemori

A critical task of structural health monitoring is damage detection and localization. Lamb wave propagation methods have been successfully applied for damage identification in plate-like structures. However, Lamb wave processing is still a challenging task due to its multimodal and dispersive characteristics. To address this issue, data-driven machine learning approaches as artificial neural network (ANN) have been proposed. However, the effectiveness of ANN can be improved based on its architecture and the learning strategy employed to train it. The present paper proposes a Multiple Particle Collision Algorithm (MPCA) to design an optimum ANN architecture to detect and locate damages in plate-like structures. For the first time in the literature, the MPCA is applied to find damages in plate-like structures. The present work uses one piezoelectric transducer to generate Lamb wave signals on an aluminum plate structure and a linear array of four transducers to capture the scattered signals. The continuous wavelet transform (CWT) processes the captured signals to estimate the time-of-flight (ToF) that is the ANN inputs. The ANN output is the damage spatial coordinates. In addition to MPCA optimization, this paper uses a quantitative entropy-based criterion to find the best mother wavelet and the scale values. The presented experimental results show that MPCA is capable of finding a simple ANN architecture with good generalization performance in the proposed damage localization application. The proposed method is compared with the 1-dimensional convolutional neural network (1D-CNN). A discussion about the advantages and limitations of the proposed method is presented.


Author(s):  
Shweta Dabetwar ◽  
Stephen Ekwaro-Osire ◽  
João Paulo Dias

Abstract Composite materials have enormous applications in various fields. Thus, it is important to have an efficient damage detection method to avoid catastrophic failures. Due to the existence of multiple damage modes and the availability of data in different formats, it is important to employ efficient techniques to consider all the types of damage. Deep neural networks were seen to exhibit the ability to address similar complex problems. The research question in this work is ‘Can data fusion improve damage classification using the convolutional neural network?’ The specific aims developed were to 1) assess the performance of image encoding algorithms, 2) classify the damage using data from separate experimental coupons, and 3) classify the damage using mixed data from multiple experimental coupons. Two different experimental measurements were taken from NASA Ames Prognostic Repository for Carbon Fiber Reinforced polymer. To use data fusion, the piezoelectric signals were converted into images using Gramian Angular Field (GAF) and Markov Transition Field. Using data fusion techniques, the input dataset was created for a convolutional neural network with three hidden layers to determine the damage states. The accuracies of all the image encoding algorithms were compared. The analysis showed that data fusion provided better results as it contained more information on the damages modes that occur in composite materials. Additionally, GAF was shown to perform the best. Thus, the combination of data fusion and deep neural network techniques provides an efficient method for damage detection of composite materials.


2020 ◽  
Vol 2 (3) ◽  
pp. 035031
Author(s):  
Stanley Washington Ferreira de Rezende ◽  
José dos Reis Vieira de Moura ◽  
Roberto Mendes Finzi Neto ◽  
Carlos Alberto Gallo ◽  
Valder Steffen

2019 ◽  
Vol 16 (6) ◽  
pp. 7982-7994
Author(s):  
Siyu Chen ◽  
◽  
Yin Zhang ◽  
Yuhang Zhang ◽  
Jiajia Yu ◽  
...  

2019 ◽  
Vol 23 (10) ◽  
pp. 4493-4502 ◽  
Author(s):  
Chuncheng Feng ◽  
Hua Zhang ◽  
Shuang Wang ◽  
Yonglong Li ◽  
Haoran Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document