Decoupling vibration control of a semi-active electrically interconnected suspension based on mechanical hardware-in-the-loop

2022 ◽  
Vol 166 ◽  
pp. 108455
Author(s):  
Pengfei Liu ◽  
Minyi Zheng ◽  
Donghong Ning ◽  
Nong Zhang ◽  
Haiping Du
2021 ◽  
Vol 26 (2) ◽  
pp. 04020119
Author(s):  
Peng Zhou ◽  
Min Liu ◽  
Weiming Kong ◽  
Yingmei Xu ◽  
Hui Li

2020 ◽  
Vol 64 (1-4) ◽  
pp. 729-736
Author(s):  
Jincheng He ◽  
Xing Tan ◽  
Wang Tao ◽  
Xinhai Wu ◽  
Huan He ◽  
...  

It is known that piezoelectric material shunted with external circuits can convert mechanical energy to electrical energy, which is so called piezoelectric shunt damping technology. In this paper, a piezoelectric stacks ring (PSR) is designed for vibration control of beams and rotor systems. A relative simple electromechanical model of an Euler Bernoulli beam supported by two piezoelectric stacks shunted with resonant RL circuits is established. The equation of motion of such simplified system has been derived using Hamilton’s principle. A more realistic FEA model is developed. The numerical analysis is carried out using COMSOL® and the simulation results show a significant reduction of vibration amplitude at the specific natural frequencies. Using finite element method, the influence of circuit parameters on lateral vibration control is discussed. A preliminary experiment of a prototype PSR verifies the PSR’s vibration reduction effect.


Sign in / Sign up

Export Citation Format

Share Document