Online unbalance compensation of a maglev rotor with two active magnetic bearings based on the LMS algorithm and the influence coefficient method

2022 ◽  
Vol 166 ◽  
pp. 108460
Author(s):  
Zhou Jian ◽  
Wu Huachun ◽  
Wang Weiyu ◽  
Yang Kezhen ◽  
Hu Yefa ◽  
...  
Author(s):  
H. Ming Chen ◽  
C. P. Roger Ku

Abstract A rotor supported by magnetic bearings can be made to spin about its inertia axis, thus greatly attenuating the imbalance forces that are transmitted through the bearings. Conventional control schemes using tracking notch filters to achieve this purpose are sometimes unstable. This paper presents a rotordynamic analysis, in the form of a computer code, to explain and predict stability in systems using these filters. An alternative balancing scheme, called Virtual Balancing, which is used to implement stable balancing with magnetic bearings, is also described. This scheme treats the bearings as balancing planes and applies an influence coefficient method to relate machine casing vibrations to feed-forward control signals injected to the bearings.


Author(s):  
D. Wiese ◽  
M. Breitwieser

Abstract The following paper presents a method for balancing simple flexible rotors with the help of influence coefficients obtained by hammer beat. The method permits time savings of approx. 50% compared to the conventional influence coefficient method. Initial positive results obtained on a flexible roll are also presented.


Author(s):  
Yunjie Miao ◽  
Feng Gao ◽  
Dalei Pan

A hybrid lower extremity exoskeleton SJTU-EX which adopts a scissor mechanism as the hip and knee flexion/extension joint is proposed in Shanghai Jiao Tong University to augment load carrying for walking. The load supporting capabilities of a traditional serially connected mechanism and the scissor mechanism are compared in detail. The kinematic influence coefficient method of the kinematic and dynamic analysis is applied in the length optimization of the scissor sides to minimize the transmitting errors between the input and output motions in walking and the load capacities of different scissor mechanisms are illustrated. The optimization results are then verified by the walking simulations. Finally, the prototype of SJTU-EX is implemented with several improvements to enhance the working performances.


2013 ◽  
Vol 483 ◽  
pp. 174-176 ◽  
Author(s):  
Shu Ping Cai ◽  
Ting Zhao

Abstract:.:Intelligent teaching Dynamic balancing is a new kind of dynamic balancing test system with various functions of teaching need. It integrates the hard bearing method using A, B, C size solution with soft bearing method using the influence coefficient method solution. The system is mainly composed of machine frame, intelligent electric measuring box, high sensitive sensor and far infrared phase sensor. It has the advantages of small volume, simple operation, security with low speed,reliable and convenient operation for students. It can deepen students' understanding of balancing knowledge, which has won the national utility model patent.


2013 ◽  
Vol 774-776 ◽  
pp. 1369-1374 ◽  
Author(s):  
Hong Jun Yang

A three-DOF parallel manipulator with two rotations and one translation was put forward as a levelling mechanism in this paper. Its structure and kinematics were analyzed and the first-order influence coefficient matrix was obtained by using the influence coefficient method. Then the complete and concise dynamic equations without too many unknowns were established based on Lagrange method. In addition, the dynamics simulation was carried out and the result shows that drive forces of the legs have no strong coupling, which is important to control system design.


Author(s):  
Yuanfeng Xia ◽  
Jian Pang ◽  
Rui Liu ◽  
Wenjuan Li ◽  
Jianchun Xu

Based on the influence coefficient method of the single-plane and multi-plane imbalance, an experimental method of a 4WD driveline system imbalance is proposed. A sensitivity theory and a testing method of influence of the 4WD driveline system imbalance on the vehicle interior 1st order vibration and noise are proposed. According to the influence coefficient method of the single plane, this paper puts forward an imbalance separation method for the driveline components, especially the imbalance separation between the driveshaft and the axle. Based on the problems and phenomena of the 1st order interior vibration and noise induced by the driveline imbalance transferring through the body floor and the interior acoustic cavity, the driveline imbalance sensitivity, the dynamic imbalance of the driveshaft and the driveline system are analyzed separately. Finally, the control methods of the dynamic imbalance and sensitivity of the 4WD vehicle driveline system are provided.


Sign in / Sign up

Export Citation Format

Share Document