Nonlocal acoustic black hole metastructures: Achieving broadband and low frequency passive vibration attenuation

2022 ◽  
Vol 169 ◽  
pp. 108716
Author(s):  
Siddharth Nair ◽  
Mehdi Jokar ◽  
Fabio Semperlotti
2017 ◽  
Vol 21 (3) ◽  
pp. 1119-1132 ◽  
Author(s):  
Gui-Lan Yu ◽  
Hong-Wei Miao

The vibration isolation performance of a PC sandwich plate with periodic hollow tube core is investigated experimentally and numerically. The experiment results reveal that there exist vibration attenuation zones in acceleration frequency responses which can be improved by increasing the number of periods or tuning some structure parameters. The presence of soft fillers shifts the attenuation zone to lower frequencies and enhances the capability of vibration isolation to some extent. Dispersion relations and acceleration frequency responses are calculated by finite element method using COMSOL MULTIPHYSICS. The attenuation zones obtained by experiments fit well with that by simulations, and both are consistent with the band gap in dispersion relations. The numerical and experimental studies in the present paper show that this PC sandwich plate exhibits a good performance on vibration isolation in low frequency ranges, which will provide some useful references for relevant research and potential applications in vibration propagation manipulations.


2019 ◽  
Vol 489 (3) ◽  
pp. 3547-3552
Author(s):  
Hiroki Kumamoto ◽  
Yuya Imasato ◽  
Naoyuki Yonemaru ◽  
Sachiko Kuroyanagi ◽  
Keitaro Takahashi

Abstract We probe ultra-low-frequency gravitational waves (GWs) with statistics of spin-down rates of millisecond pulsars (thereafter MSPs) by a method proposed in our previous work. The considered frequency range is 10−12 Hz ≲ fGW ≲ 10−10  Hz . The effect of such low-frequency GWs appears as a bias to spin-down rates that has a quadrupole pattern in the sky. We use the skewness of the spin-down rate distribution and the number of MSPs with negative spin-down rates to search for the bias induced by GWs. Applying this method to 149 MSPs selected from the ATNF pulsar catalogue, we derive upper bounds on the time derivative of the GW amplitudes of $\dot{h} \lt 6.2 \times 10^{-18}~{\rm s}^{-1}$ and $\dot{h} \lt 8.1 \times 10^{-18}~{\rm s}^{-1}$ in the directions of the Galactic Centre and M87, respectively. Approximating the GW amplitude as $\dot{h} \sim 2 \pi f_{\rm GW} h$, the bounds translate into h < 3 × 10−8 and h < 4 × 10−8, respectively, for fGW = 1/(1000 yr). Finally, we give the implications to possible supermassive black hole binaries at these sites.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaofei Du ◽  
Dacheng Huang ◽  
Jianrun Zhang

The geometric parameters of the acoustic black hole (ABH) structure are changed in power exponent, and this feature can be used to control the flexural wave to achieve energy concentration, vibration attenuation, or noise reduction. However, in practice, the ABH structure often has a truncation due to the limitation of manufacturing, which will cause the reflection coefficient to increase significantly and seriously affect the ABH effect. In this paper, a semianalytical model of the sandwich-truncated ABH beam structure with aluminum in the middle layer and steel in the upper and lower layers is constructed based on the energy principle. The ABH effect of the sandwich beam under the clamped-free boundary condition is analyzed. Meanwhile, the effects of damping layer parameters, middle layer material, and thickness on the vibrational acceleration response of the ABH region and the uniform beam region of the sandwich beam are also studied. It is observed that, for the sandwich ABH beam structure, the influence of damping layer thickness on the acceleration response peak values of both the ABH region and the uniform region is very obvious in middle and high frequencies and the peaks at about 9 kHz are completely suppressed when the damping layer thickness reaches 3 mm. It also reveals that the use of aluminum as the middle layer material can bring a vibration attenuation at around 9 kHz both for the ABH region and the uniform beam region compared with using steel as the middle layer material. Experiments are carried out to verify the accuracy of simulation analysis.


2006 ◽  
Vol 2 (S238) ◽  
pp. 405-406
Author(s):  
Mami Machida ◽  
Ryoji Matsumoto

AbstractWe present the results of global 3D MHD simulations of optically thin black hole accretion flows. The initial disk is embedded in a low density, spherical, isothermal halo and threaded by weak (β ≡ Pgas/Pmag = 100) toroidal magnetic field. General relativistic effects are simulated by using the pseudo-Newtonian potential. When the Maxwell stress in the innermost region of the disk is reduced due to the loss of magnetic flux or by decrease of disk temperature, inner torus is created around 4 – 10rs. We found that in such an inner torus, one-armed (m = 1) density enhancement grows and that the inner torus oscillates quasi-periodically. The oscillation period is about 0.1s when we assume a 10M⊙ black hole. This frequency agrees with the low-frequency QPOs observed in low/hard state of black hole candidates. The disk ejects winds whose opening angle is about 30 degree. The maximum velocity of the wind is about 0.05c.


Author(s):  
Vladislav S. Sorokin

The paper deals with the analysis of wave propagation in a general one-dimensional (1D) non-uniform waveguide featuring multiple modulations of parameters with different, arbitrarily related, spatial periods. The considered quasi-periodic waveguide, in particular, can be viewed as a model of pure periodic structures with imperfections. Effects of such imperfections on the waveguide frequency bandgaps are revealed and described by means of the method of varying amplitudes and the method of direct separation of motions. It is shown that imperfections cannot considerably degrade wave attenuation properties of 1D periodic structures, e.g. reduce widths of their frequency bandgaps. Attenuation levels and frequency bandgaps featured by the quasi-periodic waveguide are studied without imposing any restrictions on the periods of the modulations, e.g. for their ratio to be rational. For the waveguide featuring relatively small modulations with periods that are not close to each other, each of the frequency bandgaps, to the leading order of smallness, is controlled only by one of the modulations. It is shown that introducing additional spatial modulations to a pure periodic structure can enhance its wave attenuation properties, e.g. a relatively low-frequency bandgap can be induced providing vibration attenuation in frequency ranges where damping is less effective.


Sign in / Sign up

Export Citation Format

Share Document