In-process detection of cutting forces and cutting temperature signals in cryogenic assisted turning of titanium alloys: An analytical approach and experimental study

2022 ◽  
Vol 169 ◽  
pp. 108772
Author(s):  
Munish Kumar Gupta ◽  
Mehmet Erdi Korkmaz ◽  
Murat Sarıkaya ◽  
Grzegorz M. Krolczyk ◽  
Mustafa Günay
2017 ◽  
Vol 1142 ◽  
pp. 250-253
Author(s):  
Ze WU ◽  
You Qiang Xing ◽  
Peng Huang

Textured self-lubricating tools were fabricated by fiber laser machining. Dry milling of titanium alloys was carried out with these textured tools and conventional one for comparison. The cutting forces, cutting temperature, surface roughness of processed workpiece and tool flank wear were measured. Results show that the textured tools can reduce the cutting forces, cutting temperature and surface roughness of workpiece, as a result, present superior wear-resistance compared to the untextured tool.


2009 ◽  
Vol 407-408 ◽  
pp. 727-730
Author(s):  
Bo Zhang ◽  
Wu Yi Chen ◽  
Dong Liu

The machining of titanium alloys classified as difficult machining materials. It is a major problem how to improve the machining efficiency of titanium alloys. The TC4 and YS8 natural thermocouple pair was calibrated and the variation of electromotive force with change of temperature was obtained. The calibrated results were used to measure the cutting temperature while machining TC4 and the variation regulation of cutting temperature with cutting speed was obtained.


2014 ◽  
Vol 974 ◽  
pp. 121-125 ◽  
Author(s):  
R.A. Rahman Rashid ◽  
S. Sun ◽  
Suresh Palanisamy ◽  
M.S. Dargusch

In recent times, the market for the applications of titanium alloys, particularly β alloys, is growing rapidly, calling for higher productivity. However, it is difficult to machine titanium alloys. A number of research activities have been carried out in this area to improve the productivity of titanium machining. Laser assisted machining is one technique which has been proposed to enhance the machinability of various difficult-to-cut materials including titanium alloys. In this study, two β titanium alloys, viz. Ti-10V-2Fe-3Al and Ti-6Cr-5Mo-5V-4Al, were machined using laser assistance and the results were compared with unassisted machining conditions. Their response to laser assisted machining in terms of differences in the cutting forces, cutting temperature and chip formation are reported. It was found that the Ti-6Cr-5Mo-5V-4Al workpiece was much more difficult to machine even with laser assistance.


2018 ◽  
Vol 50 (4) ◽  
pp. 458-464
Author(s):  
Xu Bao ◽  
Xiaolei Guo ◽  
Pingxiang Cao ◽  
Linlin Xie ◽  
Minsi Deng

Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 266
Author(s):  
M.S.I. Chowdhury ◽  
B. Bose ◽  
S. Rawal ◽  
G.S. Fox-Rabinovich ◽  
S.C. Veldhuis

Tool wear phenomena during the machining of titanium alloys are very complex. Severe adhesive interaction at the tool chip interface, especially at low cutting speeds, leads to intensive Built Up Edge (BUE) formation. Additionally, a high cutting temperature causes rapid wear in the carbide inserts due to the low thermal conductivity of titanium alloys. The current research studies the effect of AlTiN and CrN PVD coatings deposited on cutting tools during the rough turning of a Ti6Al4V alloy with severe BUE formation. Tool wear characteristics were evaluated in detail using a Scanning Electron Microscope (SEM) and volumetric wear measurements. Chip morphology analysis was conducted to assess the in situ tribological performance of the coatings. A high temperature–heavy load tribometer that mimics machining conditions was used to analyze the frictional behavior of the coatings. The micromechanical properties of the coatings were also investigated to gain a better understanding of the coating performance. It was demonstrated that the CrN coating possess unique micromechanical properties and tribological adaptive characteristics that minimize BUE formation and significantly improve tool performance during the machining of the Ti6Al4V alloy.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


Author(s):  
Xiangqin Zhang ◽  
Xueping Zhang ◽  
A. K. Srivastava

To predict the cutting forces and cutting temperatures accurately in high speed dry cutting Ti-6Al-4V alloy, a Finite Element (FE) model is established based on ABAQUS. The tool-chip-work friction coefficients are calculated analytically using the measured cutting forces and chip morphology parameter obtained by conducting the orthogonal (2-D) machining tests. It reveals that the friction coefficients between tool-work are 3∼7 times larger than that between tool-chip, and the friction coefficients of tool-chip-work vary with feed rates. The analysis provides a better reference for the tool-work-chip friction coefficients than that given by literature empirically regardless of machining conditions. The FE model is capable of effectively simulating the high speed dry cutting process of Ti-6Al-4V alloy based on the modified Johnson-Cook model and tool-work-chip friction coefficients obtained analytically. The FE model is further validated in terms of predicted forces and the chip morphology. The predicted cutting force, thrust force and resultant force by the FE model agree well with the experimentally measured forces. The errors in terms of the predicted average value of chip pitch and the distance between chip valley and chip peak are smaller. The FE model further predicts the cutting temperature and residual stresses during high speed dry cutting of Ti-6Al-4V alloy. The maximum tool temperatures exist along the round tool edge, and the residual stress profiles along the machined surface are hook-shaped regardless of machining conditions.


2013 ◽  
Vol 554-557 ◽  
pp. 1961-1966 ◽  
Author(s):  
Yessine Ayed ◽  
Guenael Germain ◽  
Amine Ammar ◽  
Benoit Furet

Titanium alloys are known for their excellent mechanical properties, especially at high temperature. But this specificity of titanium alloys can cause high cutting forces as well as a significant release of heat that may entail a rapid wear of the cutting tool. To cope with these problems, research has been taken in several directions. One of these is the development of assistances for machining. In this study, we investigate the high pressure coolant assisted machining of titanium alloy Ti17. High pressure coolant consists of projecting a jet of water between the rake face of the tool and the chip. The efficiency of the process depends on the choice of the operating parameters of machining and the parameters of the water jet such as its pressure and its diameter. The use of this type of assistance improves chip breaking and increases tool life. Indeed, the machining of titanium alloys is generally accompanied by rapid wear of cutting tools, especially in rough machining. The work done focuses on the wear of uncoated tungsten carbide tools during machining of Ti17. Rough and finish machining in conventional and in high pressure coolant assistance conditions were tested. Different techniques were used in order to explain the mechanisms of wear. These tests are accompanied by measurement of cutting forces, surface roughness and tool wear. The Energy-dispersive X-ray spectroscopy (EDS) analysis technique made it possible to draw the distribution maps of alloying elements on the tool rake face. An area of material deposition on the rake face, characterized by a high concentration of titanium, was noticed. The width of this area and the concentration of titanium decreases in proportion with the increasing pressure of the coolant. The study showed that the wear mechanisms with and without high pressure coolant assistance are different. In fact, in the condition of conventional machining, temperature in the cutting zone becomes very high and, with lack of lubrication, the cutting edge deforms plastically and eventually collapses quickly. By contrast, in high pressure coolant assisted machining, this problem disappears and flank wear (VB) is stabilized at high pressure. The sudden rupture of the cutting edge observed under these conditions is due to the propagation of a notch and to the crater wear that appears at high pressure. Moreover, in rough condition, high pressure assistance made it possible to increase tool life by up to 400%.


2010 ◽  
Vol 443 ◽  
pp. 382-387 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Suthas Ratanakuakangwan

This paper presents the additional work of the previous research in order to verify the previously obtained cutting condition by using the different cutting tool geometries. The effects of the cutting conditions with the dry cutting are monitored to obtain the proper cutting condition for the plain carbon steel with the coated carbide tool based on the consideration of the surface roughness and the tool life. The dynamometer is employed and installed on the turret of CNC turning machine to measure the in-process cutting forces. The in-process cutting forces are used to analyze the cutting temperature, the tool wear and the surface roughness. The experimentally obtained results show that the surface roughness and the tool wear can be well explained by the in-process cutting forces. Referring to the criteria, the experimentally obtained proper cutting condition is the same with the previous research except the rake angle and the tool nose radius.


Sign in / Sign up

Export Citation Format

Share Document