scholarly journals Development of FBG Humidity Sensor via Controlled Annealing Temperature of Additive Enhanced ZnO Nanostructure Coating

2022 ◽  
Vol 68 ◽  
pp. 102802
Author(s):  
Muhammad Arif Riza ◽  
Yun Ii Go ◽  
Robert R.J. Maier ◽  
Sulaiman Wadi Harun ◽  
Siti Barirah Ahmad Anas
2019 ◽  
Vol 30 (20) ◽  
pp. 18767-18779 ◽  
Author(s):  
Yang Gu ◽  
Zi Ye ◽  
Ning Sun ◽  
Xuliang Kuang ◽  
Weijing Liu ◽  
...  

2019 ◽  
pp. 2168-2176
Author(s):  
Safa Kamal Mustafa ◽  
Raied K. Jamal ◽  
Kadhim Abdulwahid Aadim

In this paper, Zinc oxide were deposited on a glass substrate at room temperature (RT) and two annealing temperatures 350ºC and 500ºC using laser induced plasma technique. ZnO nanofilms of 200nm thickness have been deposited on glass substrate. X-RAY diffraction (XRD), atomic force microscopy and UV-visible spectrophotometer were used to analyze the results. XRD forms of ZnO nanostructure display hexagonal structure with three recognized peaks (100), (002), and (101) orientations at 500ºC annealing temperature. The optical properties of ZnO nanostructure were determined spectra. The energy gap was 3.1 eV at 300 oC and 3.25eV at 500ºC annealing temperature.


2018 ◽  
Vol 56 (3) ◽  
pp. 1001-1009 ◽  
Author(s):  
Abdelhamid El-Shaer ◽  
Mahmoud Abdelfatah ◽  
Ali Basuni ◽  
Mohsen Mosaad

Author(s):  
W.R.W. Ahmad ◽  
M.H. Mamat ◽  
Z. Khusaimi ◽  
A.S. Ismail ◽  
M. Rusop

<span lang="EN-GB">In the present study, hematite (α-Fe<sub>2</sub>O<sub>3</sub>) nanorod structure were grown on fluorine doped tin oxide coated glass substrate via sonicated immersion approach with variation of annealing temperature (350˚C – 600˚C) in one-hour treatment. The impact of varying the temperature of annealing treatment on crystalline phase, structure morphology, optical properties and humidity sensing performance of hematite were examined. X-ray diffraction pattern disclosed a rhombohedral structure with α-phase diffraction peaks. The surface morphology images taken from field emission scanning electron microscopy revealed that the hematite nanorod arrays were grown uniformly in all samples and the average diameters of nanorods were measured in the ranges between 55 and 80 nm. Ultraviolet–visible spectroscopy measurement spectra show that all samples exhibited good optical properties. The hematite humidity sensor sample annealed at 400°C has demonstrated the highest sensitivity response (S=177.78) to humidity range between 40%RH to 90%RH.</span>


2015 ◽  
Vol 12 (8/9) ◽  
pp. 697 ◽  
Author(s):  
S. Ghanem ◽  
A. Telia ◽  
C. Boukaous ◽  
M.S. Aida

Author(s):  
P. R. Swann ◽  
W. R. Duff ◽  
R. M. Fisher

Recently we have investigated the phase equilibria and antiphase domain structures of Fe-Al alloys containing from 18 to 50 at.% Al by transmission electron microscopy and Mössbauer techniques. This study has revealed that none of the published phase diagrams are correct, although the one proposed by Rimlinger agrees most closely with our results to be published separately. In this paper observations by transmission electron microscopy relating to the nucleation of disorder in Fe-24% Al will be described. Figure 1 shows the structure after heating this alloy to 776.6°C and quenching. The white areas are B2 micro-domains corresponding to regions of disorder which form at the annealing temperature and re-order during the quench. By examining specimens heated in a temperature gradient of 2°C/cm it is possible to determine the effect of temperature on the disordering reaction very precisely. It was found that disorder begins at existing antiphase domain boundaries but that at a slightly higher temperature (1°C) it also occurs by homogeneous nucleation within the domains. A small (∼ .01°C) further increase in temperature caused these micro-domains to completely fill the specimen.


Author(s):  
F.-R. Chen ◽  
T. L. Lee ◽  
L. J. Chen

YSi2-x thin films were grown by depositing the yttrium metal thin films on (111)Si substrate followed by a rapid thermal annealing (RTA) at 450 to 1100°C. The x value of the YSi2-x films ranges from 0 to 0.3. The (0001) plane of the YSi2-x films have an ideal zero lattice mismatch relative to (111)Si surface lattice. The YSi2 has the hexagonal AlB2 crystal structure. The orientation relationship with Si was determined from the diffraction pattern shown in figure 1(a) to be and . The diffraction pattern in figure 1(a) was taken from a specimen annealed at 500°C for 15 second. As the annealing temperature was increased to 600°C, superlattice diffraction spots appear at position as seen in figure 1(b) which may be due to vacancy ordering in the YSi2-x films. The ordered vacancies in YSi2-x form a mesh in Si plane suggested by a LEED experiment.


Author(s):  
E. I. Alessandrini ◽  
M. O. Aboelfotoh

Considerable interest has been generated in solid state reactions between thin films of near noble metals and silicon. These metals deposited on Si form numerous stable chemical compounds at low temperatures and have found applications as Schottky barrier contacts to silicon in VLSI devices. Since the very first phase that nucleates in contact with Si determines the barrier properties, the purpose of our study was to investigate the silicide formation of the near noble metals, Pd and Pt, at very thin thickness of the metal films on amorphous silicon.Films of Pd and Pt in the thickness range of 0.5nm to 20nm were made by room temperature evaporation on 40nm thick amorphous Si films, which were first deposited on 30nm thick amorphous Si3N4 membranes in a window configuration. The deposition rate was 0.1 to 0.5nm/sec and the pressure during deposition was 3 x 10 -7 Torr. The samples were annealed at temperatures in the range from 200° to 650°C in a furnace with helium purified by hot (950°C) Ti particles. Transmission electron microscopy and diffraction techniques were used to evaluate changes in structure and morphology of the phases formed as a function of metal thickness and annealing temperature.


Sign in / Sign up

Export Citation Format

Share Document