scholarly journals The steady-state distribution of gating charge in crayfish giant axons

1989 ◽  
Vol 55 (1) ◽  
pp. 1-19 ◽  
Author(s):  
M.D. Rayner ◽  
J.G. Starkus
1985 ◽  
Vol 248 (5) ◽  
pp. C498-C509 ◽  
Author(s):  
D. Restrepo ◽  
G. A. Kimmich

Zero-trans kinetics of Na+-sugar cotransport were investigated. Sugar influx was measured at various sodium and sugar concentrations in K+-loaded cells treated with rotenone and valinomycin. Sugar influx follows Michaelis-Menten kinetics as a function of sugar concentration but not as a function of Na+ concentration. Nine models with 1:1 or 2:1 sodium:sugar stoichiometry were considered. The flux equations for these models were solved assuming steady-state distribution of carrier forms and that translocation across the membrane is rate limiting. Classical enzyme kinetic methods and a least-squares fit of flux equations to the experimental data were used to assess the fit of the different models. Four models can be discarded on this basis. Of the remaining models, we discard two on the basis of the trans sodium dependence and the coupling stoichiometry [G. A. Kimmich and J. Randles, Am. J. Physiol. 247 (Cell Physiol. 16): C74-C82, 1984]. The remaining models are terter ordered mechanisms with sodium debinding first at the trans side. If transfer across the membrane is rate limiting, the binding order can be determined to be sodium:sugar:sodium.


2017 ◽  
Vol 31 (4) ◽  
pp. 420-435 ◽  
Author(s):  
J.-M. Fourneau ◽  
Y. Ait El Majhoub

We consider open networks of queues with Processor-Sharing discipline and signals. The signals deletes all the customers present in the queues and vanish instantaneously. The customers may be usual customers or inert customers. Inert customers do not receive service but the servers still try to share the service capacity between all the customers (inert or usual). Thus a part of the service capacity is wasted. We prove that such a model has a product-form steady-state distribution when the signal arrival rates are positive.


1980 ◽  
Vol 24 (3) ◽  
pp. 503-514 ◽  
Author(s):  
V. J. Žigman ◽  
B. S. Milić

The properties of certain wave modes excited in a weakly ionized plasma placed in an external d.c. electric field are analyzed from the standpoint of the linearized kinetic equation, the electron steady-state distribution function being taken in the form of the extended Margenau–Davydov and, in particular, Druyvesteinian. The presence of absolute stability cones formed by certain propagation directions is found. The corresponding critical values of the electron drift, destabilizing each of the modes considered, is also evaluated for a plasma with a Druyvesteinian distribution.


Sign in / Sign up

Export Citation Format

Share Document