scholarly journals X-ray small angle scattering of the human transferrin protein aggregates. A fractal study

1993 ◽  
Vol 64 (2) ◽  
pp. 520-524 ◽  
Author(s):  
A.C. Castellano ◽  
M. Barteri ◽  
A. Bianconi ◽  
E. Borghi ◽  
L. Cassiano ◽  
...  
1988 ◽  
Vol 97 ◽  
pp. 227-230 ◽  
Author(s):  
P. Lamparter ◽  
S. Steeb ◽  
D.M. Kroeger ◽  
S. Spooner

1977 ◽  
Vol 10 (1) ◽  
pp. 37-44 ◽  
Author(s):  
C. Cabos ◽  
P. Delord ◽  
J. Rouviere

The structure of micellar solutions is determined from X-ray small-angle scattering measurements on an absolute scale. The most probable structure is chosen by comparison with spherical cylindrical and lamellar models. This method is applied to two-component micelles and it is possible to follow the variation of micellar dimensions when the concentration of each component is varying.


1981 ◽  
Vol 4 (4) ◽  
pp. 225-231 ◽  
Author(s):  
J. Pleštil ◽  
J. Mikeš ◽  
K. Dušek ◽  
Ju. M. Ostanevich ◽  
A. B. Kunchenko

1989 ◽  
Vol 66 (2) ◽  
pp. 625-628 ◽  
Author(s):  
P. Goudeau ◽  
A. Naudon ◽  
G. Bomchil ◽  
R. Herino

1983 ◽  
Vol 16 (1) ◽  
pp. 42-46 ◽  
Author(s):  
O. Glatter ◽  
P. Laggner

The possibilities of obtaining structural information from X-ray small-angle scattering experiments with `white' polychromatic synchrotron radiation using line collimation are investigated by numerical simulation. Theoretical scattering curves of geometrical models were smeared with the appropriate wavelength distributions and slit-length functions, afflicted by statistical noise, and then evaluated by identical methods as normally used for experimental data, as described previously [program ITP; Glatter (1977). J. Appl. Cryst. 10, 415–421]. It is shown that even for a wavelength distribution of 50% half width, the information content is not limited to the parameters derived from the central part of the scattering curves, i.e. the radius of gyration and the zero-angle intensity, but also allows qualitative information on particle shape via the distance distribution function p(r). By a `hinge-bending model' consisting of two cylinders linked together at different angles it is demonstrated that changes in the radius of gyration amounting to less than 5% can be detected and quantified, and the qualitative changes in particle shape be reproduced.


1977 ◽  
Vol 77 (1) ◽  
pp. 165-171 ◽  
Author(s):  
Peter LAGGNER ◽  
Otto GLATTER ◽  
Karl MULLER ◽  
Otto KRATKY ◽  
Gerhard KOSTNER ◽  
...  

2017 ◽  
Vol 50 (3) ◽  
pp. 951-958 ◽  
Author(s):  
Sen Chen ◽  
Juncheng E ◽  
Sheng-Nian Luo

SLADS(http://www.pims.ac.cn/Resources.html), a parallel code for direct simulations of X-ray scattering of large anisotropic dense nanoparticle systems of arbitrary species and atomic configurations, is presented. Particles can be of arbitrary shapes and dispersities, and interactions between particles are considered. Parallelization is achieved in real space for the sake of memory limitation. The system sizes attempted are up to one billion atoms, and particle concentrations in dense systems up to 0.36. Anisotropy is explored in terms of superlattices. One- and two-dimensional small-angle scattering or diffraction patterns are obtained.SLADSis validated self-consistently or against cases with analytical solutions.


Sign in / Sign up

Export Citation Format

Share Document