The hydrolysis of L-fucose from some naturally occurring compounds by purified human-liver α-L-fucosidase

1978 ◽  
Vol 60 (2) ◽  
pp. 407-411 ◽  
Author(s):  
Robin Thorpe ◽  
Malcolm D.G. Oates
1963 ◽  
Vol 46 (2) ◽  
pp. 341-343
Author(s):  
M Alice Brown ◽  
James R Woodward ◽  
Floyd DeEds

Abstract The amount of naturally occurring methanol in fruit must be known so that the quantity left as fumigation residue can be determined. In a study of methanol content of raisins, which had given inconsistent results, the raisins were subjected to different conditions of treatment immediately prior to methanol determination. Conditions that favored pectin esterase activity gave higher values for methanol content than conditions known to inactivate enzymes. Evidence was also obtained that both chemical and enzymic hydrolysis of methyl ester groups of pectic materials occur during analysis.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 355 ◽  
Author(s):  
Deok-Kyu Hwang ◽  
Ju-Hyun Kim ◽  
Yongho Shin ◽  
Won-Gu Choi ◽  
Sunjoo Kim ◽  
...  

Catalposide, an active component of Veronica species such as Catalpa ovata and Pseudolysimachion lingifolium, exhibits anti-inflammatory, antinociceptic, anti-oxidant, hepatoprotective, and cytostatic activities. We characterized the in vitro metabolic pathways of catalposide to predict its pharmacokinetics. Catalposide was metabolized to catalposide sulfate (M1), 4-hydroxybenzoic acid (M2), 4-hydroxybenzoic acid glucuronide (M3), and catalposide glucuronide (M4) by human hepatocytes, liver S9 fractions, and intestinal microsomes. M1 formation from catalposide was catalyzed by sulfotransferases (SULTs) 1C4, SULT1A1*1, SULT1A1*2, and SULT1E1. Catalposide glucuronidation to M4 was catalyzed by gastrointestine-specific UDP-glucuronosyltransferases (UGTs) 1A8 and UGT1A10; M4 was not detected after incubation of catalposide with human liver preparations. Hydrolysis of catalposide to M2 was catalyzed by carboxylesterases (CESs) 1 and 2, and M2 was further metabolized to M3 by UGT1A6 and UGT1A9 enzymes. Catalposide was also metabolized in extrahepatic tissues; genetic polymorphisms of the carboxylesterase (CES), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes responsible for catalposide metabolism may cause inter-individual variability in terms of catalposide pharmacokinetics.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zi-Liang Guo ◽  
Mao-Xing Li ◽  
Xiao-Lin Li ◽  
Peng Wang ◽  
Wei-Gang Wang ◽  
...  

Crocetin is an aglycone of crocin naturally occurring in saffron and produced in biological systems by hydrolysis of crocin as a bioactive metabolite. It is known to exist in several medicinal plants, the desiccative ripe fruit of the cape jasmine belonging to the Rubiaceae family, and stigmas of the saffron plant of the Iridaceae family. According to modern pharmacological investigations, crocetin possesses cardioprotective, hepatoprotective, neuroprotective, antidepressant, antiviral, anticancer, atherosclerotic, antidiabetic, and memory-enhancing properties. Although poor bioavailability hinders therapeutic applications, derivatization and formulation preparation technologies have broadened the application prospects for crocetin. To promote the research and development of crocetin, we summarized the distribution, preparation and production, total synthesis and derivatization technology, pharmacological activity, pharmacokinetics, drug safety, drug formulations, and preparation of crocetin.


2021 ◽  
Vol 8 ◽  
Author(s):  
Cheyenne N. Phillips ◽  
Shawn Schowe ◽  
Conner J. Langeberg ◽  
Namoos Siddique ◽  
Erich G. Chapman ◽  
...  

Understanding how oxidatively damaged RNA is handled intracellularly is of relevance due to the link between oxidized RNA and the progression/development of some diseases as well as aging. Among the ribonucleases responsible for the decay of modified (chemically or naturally) RNA is the exonuclease Xrn-1, a processive enzyme that catalyzes the hydrolysis of 5′-phosphorylated RNA in a 5′→3′ direction. We set out to explore the reactivity of this exonuclease towards oligonucleotides (ONs, 20-nt to 30-nt long) of RNA containing 8-oxo-7,8-dihydroguanosine (8-oxoG), obtained via solid-phase synthesis. The results show that Xrn-1 stalled at sites containing 8-oxoG, evidenced by the presence of a slower moving band (via electrophoretic analyses) than that observed for the canonical analogue. The observed fragment(s) were characterized via PAGE and MALDI-TOF to confirm that the oligonucleotide fragment(s) contained a 5′-phosphorylated 8-oxoG. Furthermore, the yields for this stalling varied from app. 5–30% with 8-oxoG located at different positions and in different sequences. To gain a better understanding of the decreased nuclease efficiency, we probed: 1) H-bonding and spatial constraints; 2) anti-syn conformational changes; 3) concentration of divalent cation; and 4) secondary structure. This was carried out by introducing methylated or brominated purines (m1G, m6,6A, or 8-BrG), probing varying [Mg2+], and using circular dichroism (CD) to explore the formation of structured RNA. It was determined that spatial constraints imposed by conformational changes around the glycosidic bond may be partially responsible for stalling, however, the results do not fully explain some of the observed higher stalling yields. We hypothesize that altered π-π stacking along with induced H-bonding interactions between 8-oxoG and residues within the binding site may also play a role in the decreased Xrn-1 efficiency. Overall, these observations suggest that other factors, yet to be discovered/established, are likely to contribute to the decay of oxidized RNA. In addition, Xrn-1 degraded RNA containing m1G, and stalled mildly at sites where it encountered m6,6A, or 8-BrG, which is of particular interest given that the former two are naturally occurring modifications.


1986 ◽  
Vol 237 (2) ◽  
pp. 469-476 ◽  
Author(s):  
K L LaMarco ◽  
R H Glew

We have isolated from guinea-pig liver a broad-specificity beta-glucosidase of unknown function that utilizes as its substrate non-physiological aryl glycosides (e.g. 4-methylumbelliferyl beta-D-glucopyranoside, p-nitrophenyl beta-D-glucopyranoside). The present paper documents that this enzyme can be inhibited by various naturally occurring glycosides, including L-picein, dhurrin and glucocheirolin. In addition, L-picein, which acts as a competitive inhibitor of the broad-specificity beta-glucosidase (Ki 0.65 mM), is also a substrate for this enzyme (Km 0.63 mM; Vmax. 277,000 units/mg). Heat-denaturation, kinetic competition studies, chromatographic properties and pH optima all argue strongly that the broad-specificity beta-glucosidase is responsible for the hydrolysis of both the non-physiological aryl glycosides and L-picein. This paper demonstrates that beta-glucosidase can catalyse the hydrolysis of a natural glycoside, and may provide a key to understanding the function of this enigmatic enzyme. A possible role in the metabolism of xenobiotic compounds is discussed.


1988 ◽  
Vol 43 (9-10) ◽  
pp. 625-630 ◽  
Author(s):  
Denis Barron ◽  
Ragai K. Ibrahim

Abstract The rates of aryl sulfatase hydrolysis of several 7-, 4′- and 3-sulfated flavonoids were compared and found to follow the order 7 or 4′ >>> 3. The complete resistance of the 3-sulfate ester to enzyme hydrolysis provided a unique and convenient method for the synthesis of a number of naturally occurring flavonol-3-sulfates from the corresponding higher sulfated analogs in quantitative yield.


1967 ◽  
Vol 105 (3) ◽  
pp. 1307-1312 ◽  
Author(s):  
R. Helen Eaton ◽  
D W Moss

1. Purified human liver and small-intestinal alkaline orthophosphatases release inorganic phosphate at appreciable rates from a variety of organic pyrophosphate substrates. 2. The pyrophosphatase action is inhibited by Mg2+ ions at concentrations that activate the hydrolysis of orthophosphate substrates by these enzymes. 3. The results of mixed-substrate experiments, denaturation studies with heat or urea and starch-gel electrophoresis suggest that both orthophosphatase and pyrophosphatase activities are, in each preparation, properties of a single enzyme. 4. Intestinal phosphatase shows greater pyrophosphatase activity relative to orthophosphatase than the liver enzyme.


1987 ◽  
Vol 65 (2) ◽  
pp. 282-289 ◽  
Author(s):  
Martino Paventi ◽  
John T. Edward

The conversion of aldehydes into α-aminonitriles and thence into imidazolidin-4-thiones has been studied. Hydrolysis of the appropriate imidazolidin-4-thiones gave thioamides of nine naturally occurring α-amino acids. The possible pre-biotic significance of these compounds is discussed.


Sign in / Sign up

Export Citation Format

Share Document