803 - Antibiotic-Associated Disruption of Microbial Composition and Functionality is Restored after Fecal Microbial Transplant in Cirrhosis

2018 ◽  
Vol 154 (6) ◽  
pp. S-1107
Author(s):  
Jasmohan S. Bajaj ◽  
Genta Kakiyama ◽  
Tor C. Savidge ◽  
Andrew Fagan ◽  
Edith Gavis ◽  
...  
2020 ◽  
Vol 29 (12) ◽  
pp. 59-63
Author(s):  
O.I. Parakhina ◽  
◽  
M.N. Lokachuk ◽  
L.I. Kuznetsova ◽  
E.N. Pavlovskaya ◽  
...  

The research was carried out within the framework of the theme of state assignment № 0593–2019–0008 «To develop theoretical foundations for creating composite mixtures for bakery products using physical methods of exposure that ensure homogeneity, stability of mixtures and bioavailability of nutrients, to optimize diets population of Russia». The data on the species belonging of new strains of lactic acid bacteria and yeast isolated from samples of good quality gluten-free starter cultures are presented. A comparative assessment of the antagonistic and acid-forming activity of strains of lactic acid bacteria and the fermentative activity of yeast was carried out. The composition of microbial compositions from selected strains of LAB and yeast was developed. The influence of the starter culture on the new microbial composition on the physicochemical, organoleptic indicators of the bread quality and resistance to mold and ropy-disease was investigated.


Author(s):  
E. S. Slazhneva ◽  
E. A. Tikhomirova ◽  
V. G. Atrushkevich

Relevance. The modern view of periodontitis as a dysbiotic disease that occurs as a result of changes in the microbial composition of the subgingival region is considered in a systematic review.Purpose. To study a new paradigm of development of generalized periodontitis.Materials and methods. Randomized controlled trials (RCTS) were selected for the study, including cluster RCTS, controlled (non-randomized) microbiological and clinical studies of the oral microbiome in adult patients with generalized periodontitis over the past 10 years.Results. The transition from a symbiotic microflora to a dysbiotic pathogenic community triggers the host's inflammatory response, which contributes to the development of periodontal diseases. Modern ideas about periodontal pathogenic bacteria dictate new requirements for the treatment of periodontal diseases. The second part of the review examines the microbial profiles of periodontal disease in various nosological forms, the mechanisms of the immune response and approaches to the treatment of periodontal disease from the perspective of biofilm infection.Conclusions. As follows from modern literature periodontitis is to a certain extent caused by the transition from a harmonious symbiotic bacterial community to a dysbiotic one. Recent scientific studies have shown that not single microorganism is not able to cause disease but the microbial community as a whole leads to the development of pathology.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 254
Author(s):  
Ying Wang ◽  
Jianqing Zhu ◽  
Jie Fang ◽  
Li Shen ◽  
Shuojia Ma ◽  
...  

We characterized the gut microbial composition and relative abundance of gut bacteria in the larvae and adults of Pieris canidia by 16S rRNA gene sequencing. The gut microbiota structure was similar across the life stages and sexes. The comparative functional analysis on P. canidia bacterial communities with PICRUSt showed the enrichment of several pathways including those for energy metabolism, immune system, digestive system, xenobiotics biodegradation, transport, cell growth and death. The parameters often used as a proxy of insect fitness (development time, pupation rate, emergence rate, adult survival rate and weight of 5th instars larvae) showed a significant difference between treatment group and untreated group and point to potential fitness advantages with the gut microbiomes in P. canidia. These data provide an overall view of the bacterial community across the life stages and sexes in P. canidia.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Bianca E Silva ◽  
Zvifadzo Matsena Zingoni ◽  
Lizette L. Koekemoer ◽  
Yael L. Dahan-Moss

Abstract Background Mosquito species from the Anopheles gambiae complex and the Anopheles funestus group are dominant African malaria vectors. Mosquito microbiota play vital roles in physiology and vector competence. Recent research has focused on investigating the mosquito microbiota, especially in wild populations. Wild mosquitoes are preserved and transported to a laboratory for analyses. Thus far, microbial characterization post-preservation has been investigated in only Aedes vexans and Culex pipiens. Investigating the efficacy of cost-effective preservatives has also been limited to AllProtect reagent, ethanol and nucleic acid preservation buffer. This study characterized the microbiota of African Anopheles vectors: Anopheles arabiensis (member of the An. gambiae complex) and An. funestus (member of the An. funestus group), preserved on silica desiccant and RNAlater® solution. Methods Microbial composition and diversity were characterized using culture-dependent (midgut dissections, culturomics, MALDI-TOF MS) and culture-independent techniques (abdominal dissections, DNA extraction, next-generation sequencing) from laboratory (colonized) and field-collected mosquitoes. Colonized mosquitoes were either fresh (non-preserved) or preserved for 4 and 12 weeks on silica or in RNAlater®. Microbiota were also characterized from field-collected An. arabiensis preserved on silica for 8, 12 and 16 weeks. Results Elizabethkingia anophelis and Serratia oryzae were common between both vector species, while Enterobacter cloacae and Staphylococcus epidermidis were specific to females and males, respectively. Microbial diversity was not influenced by sex, condition (fresh or preserved), preservative, or preservation time-period; however, the type of bacterial identification technique affected all microbial diversity indices. Conclusions This study broadly characterized the microbiota of An. arabiensis and An. funestus. Silica- and RNAlater®-preservation were appropriate when paired with culture-dependent and culture-independent techniques, respectively. These results broaden the selection of cost-effective methods available for handling vector samples for downstream microbial analyses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camilo Quiroga-González ◽  
Luis Alberto Chica Cardenas ◽  
Mónica Ramírez ◽  
Alejandro Reyes ◽  
Camila González ◽  
...  

AbstractMicrobiome is known to play an important role in the health of organisms and different factors such as diet have been associated with modifications in microbial communities. Differences in the microbiota composition of wild and captive animals has been evaluated; however, variation during a reintroduction process in primates has never been reported. Our aim was to identify changes in the bacterial composition of three individuals of reintroduced woolly monkeys (Lagothrix lagothricha) and the variables associated with such changes. Fecal samples were collected and the V4 region of the 16S rRNA gene was sequenced to determine gut microbial composition and functionality. Individual samples from released individuals showed a higher microbial diversity after being released compared to before liberation, associated with changes in their diet. Beta diversity and functionality analysis showed separation of samples from released and captive conditions and the major factor of variation was the moment of liberation. This study shows that intestinal microbiota varies depending on site conditions and is mainly associated with diet diversity. The intake of food from wild origin by released primates may promote a positive effect on gut microbiota, improving health, and potentially increasing success in reintroduction processes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katherine A. Partrick ◽  
Anna M. Rosenhauer ◽  
Jérémie Auger ◽  
Amanda R. Arnold ◽  
Nicole M. Ronczkowski ◽  
...  

AbstractSocial stress exacerbates anxious and depressive behaviors in humans. Similarly, anxiety- and depressive-like behaviors are triggered by social stress in a variety of non-human animals. Here, we tested whether oral administration of the putative anxiolytic probiotic strains Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces the striking increase in anxiety-like behavior and changes in gut microbiota observed following social defeat stress in Syrian hamsters. We administered the probiotic at two different doses for 21 days, and 16S rRNA gene amplicon sequencing revealed a shift in microbial structure following probiotic administration at both doses, independently of stress. Probiotic administration at either dose increased anti-inflammatory cytokines IL-4, IL-5, and IL-10 compared to placebo. Surprisingly, probiotic administration at the low dose, equivalent to the one used in humans, significantly increased social avoidance and decreased social interaction. This behavioral change was associated with a reduction in microbial richness in this group. Together, these results demonstrate that probiotic administration alters gut microbial composition and may promote an anti-inflammatory profile but that these changes may not promote reductions in behavioral responses to social stress.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 246
Author(s):  
Felix C.F. Schmitt ◽  
Martin Schneider ◽  
William Mathejczyk ◽  
Markus A. Weigand ◽  
Jane C. Figueiredo ◽  
...  

Changes in the gut microbiome have already been associated with postoperative complications in major abdominal surgery. However, it is still unclear whether these changes are transient or a long-lasting effect. Therefore, the aim of this prospective clinical pilot study was to examine long-term changes in the gut microbiota and to correlate these changes with the clinical course of the patient. Methods: In total, stool samples of 62 newly diagnosed colorectal cancer patients undergoing primary tumor resection were analyzed by 16S-rDNA next-generation sequencing. Stool samples were collected preoperatively in order to determine the gut microbiome at baseline as well as at 6, 12, and 24 months thereafter to observe longitudinal changes. Postoperatively, the study patients were separated into two groups—patients who suffered from postoperative complications (n = 30) and those without complication (n = 32). Patients with postoperative complications showed a significantly stronger reduction in the alpha diversity starting 6 months after operation, which does not resolve, even after 24 months. The structure of the microbiome was also significantly altered from baseline at six-month follow-up in patients with complications (p = 0.006). This was associated with a long-lasting decrease of a large number of species in the gut microbiota indicating an impact in the commensal microbiota and a long-lasting increase of Fusobacterium ulcerans. The microbial composition of the gut microbiome shows significant changes in patients with postoperative complications up to 24 months after surgery.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 820
Author(s):  
Faye Chleilat ◽  
Alana Schick ◽  
Raylene A. Reimer

Background: Consuming a diet high in prebiotic fiber has been associated with improved metabolic and gut microbial parameters intergenerationally, although studies have been limited to maternal intake with no studies examining this effect in a paternal model. Method: Male Sprague Dawley rats were allocated to either (1) control or (2) oligofructose-supplemented diet for nine weeks and then mated. Offspring consumed control diet until 16 weeks of age. Bodyweight, body composition, glycemia, hepatic triglycerides, gastrointestinal hormones, and gut microbiota composition were measured in fathers and offspring. Results: Paternal energy intake was reduced, while satiety inducing peptide tyrosine tyrosine (PYY) gut hormone was increased in prebiotic versus control fathers. Increased serum PYY persisted in female prebiotic adult offspring. Hepatic triglycerides were decreased in prebiotic fathers with a similar trend (p = 0.07) seen in female offspring. Gut microbial composition showed significantly reduced alpha diversity in prebiotic fathers at 9 and 12 weeks of age (p < 0.001), as well as concurrent differences in beta diversity (p < 0.001), characterized by differences in Bifidobacteriaceae, Lactobacillaceae and Erysipelotrichaceae, and particularly Bifidobacterium animalis. Female prebiotic offspring had higher alpha diversity at 3 and 9 weeks of age (p < 0.002) and differences in beta diversity at 15 weeks of age (p = 0.04). Increases in Bacteroidetes in female offspring and Christensenellaceae in male offspring were seen at nine weeks of age. Conclusions: Although paternal prebiotic intake before conception improves metabolic and microbiota outcomes in fathers, effects on offspring were limited with increased serum satiety hormone levels and changes to only select gut bacteria.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tzipi Braun ◽  
Shiraz Halevi ◽  
Rotem Hadar ◽  
Gilate Efroni ◽  
Efrat Glick Saar ◽  
...  

AbstractThe coronavirus disease 2019 (COVID-19) has rapidly spread around the world, impacting the lives of many individuals. Growing evidence suggests that the nasopharyngeal and respiratory tract microbiome are influenced by various health and disease conditions, including the presence and the severity of different viral disease. To evaluate the potential interactions between Severe Acute Respiratory Syndrome Corona 2 (SARS-CoV-2) and the nasopharyngeal microbiome. Microbial composition of nasopharyngeal swab samples submitted to the clinical microbiology lab for suspected SARS-CoV-2 infections was assessed using 16S amplicon sequencing. The study included a total of 55 nasopharyngeal samples from 33 subjects, with longitudinal sampling available for 12 out of the 33 subjects. 21 of the 33 subjects had at least one positive COVID-19 PCR results as determined by the clinical microbiology lab. Inter-personal variation was the strongest factor explaining > 75% of the microbial variation, irrespective of the SARS-CoV-2 status. No significant effect of SARS-CoV-2 on the nasopharyngeal microbial community was observed using multiple analysis methods. These results indicate that unlike some other viruses, for which an effect on the microbial composition was noted, SARS-CoV-2 does not have a strong effect on the nasopharynx microbial habitants.


Sign in / Sign up

Export Citation Format

Share Document