The internal surface area basis, a key issue of modeling fouling in enhanced heat transfer tubes

2003 ◽  
Vol 46 (22) ◽  
pp. 4345-4349 ◽  
Author(s):  
Wei Li
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 964
Author(s):  
Thomas Steiner ◽  
Daniel Neurauter ◽  
Peer Moewius ◽  
Christoph Pfeifer ◽  
Verena Schallhart ◽  
...  

This study investigates geometric parameters of commercially available or recently published models of catalyst substrates for passenger vehicles and provides a numerical evaluation of their influence on heat-up behavior. Parameters considered to have a significant impact on the thermal economy of a monolith are: internal surface area, heat transfer coefficient, and mass of the converter, as well as its heat capacity. During simulation experiments, it could be determined that the primary role is played by the mass of the monolith and its internal surface area, while the heat transfer coefficient only has a secondary role. Furthermore, an optimization loop was implemented, whereby the internal surface area of a commonly used substrate was chosen as a reference. The lengths of the thin wall and high cell density monoliths investigated were adapted consecutively to obtain the reference internal surface area. The results obtained by this optimization process contribute to improving the heat-up performance while simultaneously reducing the valuable installation space required.


Author(s):  
G. E. Andrews ◽  
F. Bazdidi-Tehrani ◽  
C. I. Hussain ◽  
J. P. Pearson

The overall surface averaged heat transfer was determined for air passing through arrays of small diameter holes drilled at 90° through thin metal walls. The influence of the wall metal thickness, L, was investigated for a range of hole diameters, D, and pitch, X. L/D was varied from 0.43 to 8.3 using 13 different test geometries. It was found that although the influence of L/D was significant, there was only a ±20% data scatter on a correlation of the results that ignored the influence of L/D for 0.8<L/D<10. The results showed that the heat transfer was dominated by the hole approach flow and this surface area Ax was the appropriate heat transfer area for the determination of the heat transfer coefficient. The dominant parameters that affected the heat transfer were G and X/D. An improved correlation for a range of L/D was achieved if the heat transfer surface area was taken as the sum of Ax and Ah, the hole internal surface area.


Author(s):  
Abubakar M. El-Jummah ◽  
Ahmad Nazari ◽  
Gordon E. Andrews ◽  
John E. J. Staggs

Internal wall heat transfer for impingement/effusion cooling was measured and predicted using conjugate heat transfer (CHT) computational fluid dynamics (CFD). The work was only concerned with the internal wall heat transfer and not with the effusion film cooling and there was no hot gas crossflow. Previous work had predicted impingement/effusion internal wall cooling with equal number of holes. The present work investigated a small number of impingement holes and a larger number of effusion holes. The aim was to see if the effusion holes acted as a suction surface to the impingement surface flow and thus enhanced the wall heat transfer. Hole ratios of 1/4, 1/9 and 1/25 were studied by varying the number of effusion holes for a fixed array of impingement holes and a fixed impingement gap, Z, of 8 mm. The Z/D for the impingement holes was 2.7. The impingement hole pitch, X, to diameter, D ratio X/D was 10.6 at a constant effusion hole X/D of 4.7 for all the configurations. The impingement holes were aligned on the midpoint of four effusion holes. The results were computed for a mass flux G from 0.1–0.94 kg/sm2bar for all n. This gave 26 separate CFD/CHT computations. Locally surface, X2, average heat transfer coefficient (HTC), hx, values were determined using the lumped capacitance method. Nimonic 75 metal walls with imbedded thermocouples were used to determine hx from the time constant in a transient cooling experiment following electrical heating to about 80°C. The CHT/CFD predictions showed good agreement with measured data and the highest number of effusion holes for the 1/25 hole ratio gave the highest h. However, comparison with the predicted and experimental results for equal number of impingement and effusion holes for the same Z, showed that there was little advantage of decreasing the number of impingement holes, apart from that of decreasing the Z/D significantly for the 1/15 hole ratio, which increased the heat transfer. The largest number of effusion holes had the highest heat transfer due to the greater internal surface area of the holes and their closer spacing. This was present irrespective of the number of impingement holes and there was no evidence of any benefit of the 25 effusion holes enhancing the single impingement jet heat transfer. For the lowest number of effusion hole there was predicted to be a small disadvantage of reducing the number of impingement jets.


Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 185 ◽  
Author(s):  
Guido Giammaria ◽  
Gerard van Rooij ◽  
Leon Lefferts

The goal of this study is to develop a method to distinguish between plasma chemistry and thermal effects in a Dielectric Barrier Discharge nonequilibrium plasma containing a packed bed of porous particles. Decomposition of CaCO3 in Ar plasma is used as a model reaction and CaCO3 samples were prepared with different external surface area, via the particle size, as well as with different internal surface area, via pore morphology. Also, the effect of the CO2 in gas phase on the formation of products during plasma enhanced decomposition is measured. The internal surface area is not exposed to plasma and relates to thermal effect only, whereas both plasma and thermal effects occur at the external surface area. Decomposition rates were in our case found to be influenced by internal surface changes only and thermal decomposition is concluded to dominate. This is further supported by the slow response in the CO2 concentration at a timescale of typically 1 minute upon changes in discharge power. The thermal effect is estimated based on the kinetics of the CaCO3 decomposition, resulting in a temperature increase within 80 °C for plasma power from 0 to 6 W. In contrast, CO2 dissociation to CO and O2 is controlled by plasma chemistry as this reaction is thermodynamically impossible without plasma, in agreement with fast response within a few seconds of the CO concentration when changing plasma power. CO forms exclusively via consecutive dissociation of CO2 in the gas phase and not directly from CaCO3. In ongoing work, this methodology is used to distinguish between thermal effects and plasma–chemical effects in more reactive plasma, containing, e.g., H2.


2004 ◽  
Vol 67 (5) ◽  
pp. 1017-1021 ◽  
Author(s):  
JOHN B. LUCHANSKY ◽  
JEFFREY E. CALL

Commercially prepared frankfurters were formulated with and without ~1.4% potassium lactate and 0.1% sodium diacetate and were subsequently processed in cellulose casings coated with and without nisin (~50,000 IU per square inch of internal surface area) to control the outgrowth of Listeria monocytogenes during refrigerated storage. The frankfurters were inoculated with ~5 log CFU per package of a five-strain mixture of L. monocytogenes and then vacuum sealed before being stored at 4° C for 60 to 90 days. Surviving organisms were recovered and enumerated by rinsing each package with 18 ml of sterile 0.1% peptone water and plating onto MOX selective agar. The data for each of two trials were averaged. In packages that contained frankfurters formulated with potassium lactate and sodium diacetate and prepared in nisin-coated casings, L. monocytogenes levels decreased by 1.15 log CFU per package after 90 days of storage. L. monocytogenes levels decreased by 0.95 log CFU per package in frankfurters that were prepared in casings that were not coated with nisin. In packages of frankfurters that were formulated without potassium lactate and sodium diacetate and prepared in nisin-coated casings, L. monocytogenes levels decreased by 0.88 log CFU per package after 15 days of storage but then increased appreciablythereafter over a 60-day period of refrigerated storage. There was also an appreciable increase in pathogen numbers during 60 days of storage in otherwise similar frankfurters formulated without potassium lactate and sodium diacetate prepared in casings that were not coated with nisin. These data confirm that potassium lactate and sodium diacetate display listeriostatic activity as an ingredient of commercial frankfurters. These data also establish that cellulose casings coated with nisin display only moderate antilisterial activity in vacuum-sealed packages of commercially prepared frankfurters during storage at 4° C.


2004 ◽  
Vol 277 (2) ◽  
pp. 383-386 ◽  
Author(s):  
Ricardo Navarrete ◽  
Philip Llewellyn ◽  
Françoise Rouquerol ◽  
Renaud Denoyel ◽  
Jean Rouquerol

1962 ◽  
Vol 40 (2) ◽  
pp. 184-188 ◽  
Author(s):  
P. L. Walker Jr. ◽  
W. V. Kotlensky

It is shown that the open pore volume within carbon blacks can be calculated from nitrogen adsorption isotherms (77°K) on the blacks. From this volume and a helium density, the apparent density of a black can be calculated. Other properties of the blacks which then can be calculated are free surface area, internal surface area, surface roughness factor, and the average pore diameter of the internal surface. These data are presented for five selected carbon blacks.


Sign in / Sign up

Export Citation Format

Share Document