scholarly journals Integration of Long-Term-Memory-Related Synaptic Plasticity Involves Bidirectional Regulation of Gene Expression and Chromatin Structure

Cell ◽  
2002 ◽  
Vol 111 (4) ◽  
pp. 483-493 ◽  
Author(s):  
Zhonghui Guan ◽  
Maurizio Giustetto ◽  
Stavros Lomvardas ◽  
Joung-Hun Kim ◽  
Maria Concetta Miniaci ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lijie Hao ◽  
Zhuoqin Yang

Noncoding RNAs such as miRNAs and piRNAs have long-lasting effects on the regulation of gene expression involved in long-term synaptic changes. To characterize gene regulation mediated by small noncoding RNAs associated with long-term memory in Aplysia, we consider two noncoding RNAs stimulated by 5-HT into a gene regulatory network motif model, including miR-124 that binds to and inhibits the mRNA of CREB1 and piR-F that facilitates serotonin-dependent DNA methylation to lead to repression of CREB2. Codimension-1 and -2 bifurcation analyses of 5-HT regulating both miR-124 and piR-F and a negative feedback strength for oscillation reveal rich dynamical properties of bistability and oscillations robust to variations in all other parameters. More importantly, we verify three stimulus protocols of 5-HT in experiments by our model and find that application of five pulses of 5-HT leads to a transient decrease of miR-124 but increase of piR-F concentrations, which matters sustained high level of CREB1 concentration associated with long-term memory. Furthermore, we perform bifurcation analyses for the concentrations of miR-124 and piR-F as two parameters to explore dynamical mechanisms underlying the epigenetic regulation in long-term memory formation. This study provides insights into revealing regulatory roles of epigenetic changes in gene expression involving noncoding RNAs associated with synaptic plasticity.


2009 ◽  
Vol 89 (1) ◽  
pp. 121-145 ◽  
Author(s):  
Cristina M. Alberini

Transcription is a molecular requisite for long-term synaptic plasticity and long-term memory formation. Thus, in the last several years, one main interest of molecular neuroscience has been the identification of families of transcription factors that are involved in both of these processes. Transcription is a highly regulated process that involves the combined interaction and function of chromatin and many other proteins, some of which are essential for the basal process of transcription, while others control the selective activation or repression of specific genes. These regulated interactions ultimately allow a sophisticated response to multiple environmental conditions, as well as control of spatial and temporal differences in gene expression. Evidence based on correlative changes in expression, genetic mutations, and targeted molecular inhibition of gene expression have shed light on the function of transcription in both synaptic plasticity and memory formation. This review provides a brief overview of experimental work showing that several families of transcription factors, including CREB, C/EBP, Egr, AP-1, and Rel, have essential functions in both processes. The results of this work suggest that patterns of transcription regulation represent the molecular signatures of long-term synaptic changes and memory formation.


2012 ◽  
Vol 2 (11) ◽  
pp. 1437-1445 ◽  
Author(s):  
Ari Winbush ◽  
Danielle Reed ◽  
Peter L. Chang ◽  
Sergey V. Nuzhdin ◽  
Lisa C. Lyons ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document