Global stabilization of a rotational motion of a rigid body using rotors system

2002 ◽  
Vol 133 (2-3) ◽  
pp. 297-307 ◽  
Author(s):  
Awad El-Gohary
1996 ◽  
Vol 172 ◽  
pp. 309-320
Author(s):  
S.A. Klioner

We consider rotational motion of an arbitrarily composed and shaped, deformable weakly self-gravitating body being a member of a system of N arbitrarily composed and shaped, deformable weakly self-gravitating bodies in the post-Newtonian approximation of general relativity. Considering importance of the notion of angular velocity of the body (Earth, pulsar) for adequate modelling of modern astronomical observations, we are aimed at introducing a post-Newtonian-accurate definition of angular velocity. Not attempting to introduce a relativistic notion of rigid body (which is well known to be ill-defined even at the first post-Newtonian approximation) we consider bodies to be deformable and introduce the post-Newtonian generalizations of the Tisserand axes and the principal axes of inertia.


Sign in / Sign up

Export Citation Format

Share Document