Measuring quality and other key issues in molecular biology software engineering

1997 ◽  
Vol 21 (4) ◽  
pp. 189-190
Author(s):  
Andrzej K. Konopka
2010 ◽  
Vol 2 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Malgorzata Witkowska-Zimny ◽  
Edyta Wrobel ◽  
Jacek Przybylski

SummaryOne of the key issues of organogenesis is the understanding of mechanisms underlying the differentiation of progenitor cells into more specialized cells of individual tissues. Recent transcriptomic and proteomic approaches of molecular biology have led to the identification of several factors and mechanisms regulating morphogenesis at the genetic level which affect the function of already differentiated cells. In the last few years, several reports about osteoblastogenesis have been published. This review presents recent findings on the role of the most important transcription factors supporting bone formation.


Author(s):  
Bhekisipho Twala ◽  
Michelle Cartwright ◽  
Martin Shepperd

Recently, the use of machine learning (ML) algorithms has proven to be of great practical value in solving a variety of software engineering problems including software prediction, for example, cost and defect processes. An important advantage of machine learning over statistical analysis as a modelling technique lies in the fact that the interpretation of production rules is more straightforward and intelligible to human beings than, say, principal components and patterns with numbers that represent their meaning. The main focus of this chapter is upon rule induction (RI): providing some background and key issues on RI and further examining how RI has been utilised to handle uncertainties in data. Application of RI in prediction and other software engineering tasks is considered. The chapter concludes by identifying future research work when applying rule induction in software prediction. Such future research work might also help solve new problems related to rule induction and prediction.


2001 ◽  
Vol 16 (4) ◽  
pp. 349-373 ◽  
Author(s):  
GERHARD WEIß

Agent-Oriented Software Engineering (AOSE) is rapidly emerging in response to urgent needs in both software engineering and agent-based computing. While these two disciplines coexisted without remarkable interaction until some years ago, today there is rich and fruitful interaction among them and various approaches are available that bring together techniques, concepts and ideas from both sides. This article offers a guide to the broad body of literature on AOSE. The guide, which is intended to be of value to both researchers and practitioners, is structured according to key issues and key topics that arise when dealing with AOSE: methods and frameworks for requirements engineering, analysis, design, and implementation; languages for programming, communication and coordination and ontology specification; and development tools and platforms.


2020 ◽  
Vol 43 ◽  
Author(s):  
Valerie F. Reyna ◽  
David A. Broniatowski

Abstract Gilead et al. offer a thoughtful and much-needed treatment of abstraction. However, it fails to build on an extensive literature on abstraction, representational diversity, neurocognition, and psychopathology that provides important constraints and alternative evidence-based conceptions. We draw on conceptions in software engineering, socio-technical systems engineering, and a neurocognitive theory with abstract representations of gist at its core, fuzzy-trace theory.


Author(s):  
Cecil E. Hall

The visualization of organic macromolecules such as proteins, nucleic acids, viruses and virus components has reached its high degree of effectiveness owing to refinements and reliability of instruments and to the invention of methods for enhancing the structure of these materials within the electron image. The latter techniques have been most important because what can be seen depends upon the molecular and atomic character of the object as modified which is rarely evident in the pristine material. Structure may thus be displayed by the arts of positive and negative staining, shadow casting, replication and other techniques. Enhancement of contrast, which delineates bounds of isolated macromolecules has been effected progressively over the years as illustrated in Figs. 1, 2, 3 and 4 by these methods. We now look to the future wondering what other visions are waiting to be seen. The instrument designers will need to exact from the arts of fabrication the performance that theory has prescribed as well as methods for phase and interference contrast with explorations of the potentialities of very high and very low voltages. Chemistry must play an increasingly important part in future progress by providing specific stain molecules of high visibility, substrates of vanishing “noise” level and means for preservation of molecular structures that usually exist in a solvated condition.


Author(s):  
D. J. Wallis ◽  
N. D. Browning

In electron energy loss spectroscopy (EELS), the near-edge region of a core-loss edge contains information on high-order atomic correlations. These correlations give details of the 3-D atomic structure which can be elucidated using multiple-scattering (MS) theory. MS calculations use real space clusters making them ideal for use in low-symmetry systems such as defects and interfaces. When coupled with the atomic spatial resolution capabilities of the scanning transmission electron microscope (STEM), there therefore exists the ability to obtain 3-D structural information from individual atomic scale structures. For ceramic materials where the structure-property relationships are dominated by defects and interfaces, this methodology can provide unique information on key issues such as like-ion repulsion and the presence of vacancies, impurities and structural distortion.An example of the use of MS-theory is shown in fig 1, where an experimental oxygen K-edge from SrTiO3 is compared to full MS-calculations for successive shells (a shell consists of neighboring atoms, so that 1 shell includes only nearest neighbors, 2 shells includes first and second-nearest neighbors, and so on).


2020 ◽  
Vol 64 (6) ◽  
pp. 863-866
Author(s):  
Zhe Wu

Abstract The year 2019 marked the fortieth anniversary of the Chinese Society of Biochemistry and Molecular Biology (CSBMB), whose mission is to promote biomolecular research and education in China. The last 40 years have witnessed tremendous growth and achievements in biomolecular research by Chinese scientists and Essays in Biochemistry is delighted to publish this themed issue that focuses on exciting areas within RNA biology, with each review contributed by key experts from China.


Sign in / Sign up

Export Citation Format

Share Document