Investigation of Bioregeneration of Activated Carbon in the Combined Advanced Oil Refinery and Municipal Wastewater Treatment

Author(s):  
B. Dalmacija ◽  
O. Petrovic ◽  
D. Miskovic ◽  
M. Gantar ◽  
Z. Zivanov ◽  
...  
2015 ◽  
Vol 72 (4) ◽  
pp. 616-622 ◽  
Author(s):  
Defang Ma ◽  
Baoyu Gao ◽  
Yan Wang ◽  
Qinyan Yue ◽  
Qian Li

A hybrid process with membrane bioreactor (MBR) and powdered activated carbon (PAC), PAC/MBR, was used for real municipal wastewater treatment and reuse. The roles of chlorine dose, contact time, pH and bromide in trihalomethane (THM) formation and speciation during chlorination of the reclaimed water were investigated. Total trihalomethane (TTHM) yield exponentially increased to maximum with increasing chlorine dose (correlation coefficient R2 = 0.98). Prolonging substrate chlorine contact time significantly promoted TTHM formation. Less than 40% of THMs formed in the first 24 h, indicating that the PAC/MBR effluent organic matters were mostly composed of slow-reacting precursors. Increasing pH and bromide concentration facilitated THM formation. Higher chlorine dose and contact time enhanced chloro-THM formation. The bromo-THM formation was favored at near neutral condition. Despite the variation of chlorine dose, contact time and pH, the yield of THM species in order was usually CHCl3 > CHBrCl2 > CHBr2Cl > CHBr3. However, THM speciation shifted from chlorinated species to brominated species with increasing bromide concentration.


2006 ◽  
Vol 6 (4) ◽  
pp. 17-25 ◽  
Author(s):  
A. Ried ◽  
J. Mielcke

The use of ozone and/or UV for water treatment processes is often a combination of an ozone and/or UV-step with additional treatment steps, e.g. biological treatment, flocculation, filtration and activated carbon. Therefore, it is necessary to develop an optimized combination of these different steps. This article will demonstrate the advantages presenting two examples for drinking water treatment and two examples for municipal wastewater treatment.


1999 ◽  
Vol 40 (1) ◽  
pp. 191-198 ◽  
Author(s):  
L. Nicolet ◽  
U. Rott

The use and recirculation of powdered activated carbon (PAC) as an advanced treatment for colour removal in municipal wastewater treatment plants is presented. Studied wastewaters consist of domestic effluents with a high portion of dyehouse residual waters. The particularity of the treatment is that PAC is not disposed of before being recirculated several times. Therefore, it enables the use of a great part of the total adsorption capacity of the PAC. A positive side effect is that halogenated and refractory organic compounds, which are not degraded by micro-organisms in a conventional municipal wastewater treatment plant, are removed too. This paper describes results which were obtained in batch experiments and in a pilot plant during two years of observation, and concludes with advantages and drawbacks of this technology.


2010 ◽  
Vol 61 (10) ◽  
pp. 2635-2644 ◽  
Author(s):  
Petros Karageorgos ◽  
Manolis Latos ◽  
Christina Kotsifaki ◽  
Mihalis Lazaridis ◽  
Nicolas Kalogerakis

The purpose of this paper to present a case study on how to address the odor problem from secondary sources within a municipal wastewater treatment plant (WWTP) by first identifying the locations of the problem and second by evaluating alternative treatment technologies. The WWTP of Chania is a typical 100,000 equivalent inhabitants-facility in a warm semi-arid environment which is located close to residential areas. The installation of a chemical scrubber to control major odor sources within the plant did not succeed in eliminating complaints by nearby residents, and additional measures were required. In this case study we identify all major secondary sources of odor within the plant and evaluate the effectiveness of the different technologies that were employed to address this problem (cover installation, gas and liquid phase oxidation, activated carbon/permanganate absorption, FeCl3 addition). In particular, we found that installation of covers and reduction of turbulence at two key locations within the WWTP was the best strategy to combat unpleasant odors. Furthermore, when the central chemical scrubber was near capacity the installation of an auxiliary system of activated carbon absorption coupled to permanganate oxidation was deemed to be a safe approach. However, despite the very high removal efficiency (>99.5%) of the unit, the addition of FeCl3 in the liquid phase was required in order to achieve complete deodorization (below the human odor threshold level).


2010 ◽  
Vol 146-147 ◽  
pp. 1631-1637
Author(s):  
Zhu Wu Jiang ◽  
Kai Kang ◽  
Xiao Ming Xu ◽  
Ya Lei Zhang ◽  
Xue Jiang Wang

In this article, the sludge-based activated carbon was prepared by the sewage sludge from the municipal wastewater treatment plants with ZnCl2 as the activator. The concentration of the activator was 30% and the pyrolysis temperature and duration were 500°C and 1 hour, respectively. The yield of sludge-based activated carbon was 30.14% with 4.66% ash. Under the best preparation condition, carbon content would be highest and the pore structure would be clear. The sludge-based activated carbon was mainly composed of mesopores. The main adsorption peaks of the sludge-based activated carbon were C-O-C (1078.3 cm-1), C=C(1568.7 cm-1)and –OH(3190.9 cm-1)groups.


2012 ◽  
Vol 66 (10) ◽  
pp. 2115-2121 ◽  
Author(s):  
M. Boehler ◽  
B. Zwickenpflug ◽  
J. Hollender ◽  
T. Ternes ◽  
A. Joss ◽  
...  

Micropollutants (MP) are only partly removed from municipal wastewater by nutrient removal plants and are seen increasingly as a threat to aquatic ecosystems and to the safety of drinking water resources. The addition of powder activated carbon (PAC) is a promising technology to complement municipal nutrient removal plants in order to achieve a significant reduction of MPs and ecotoxicity in receiving waters. This paper presents the salient outcomes of pilot- and full-scale applications of PAC addition in different flow schemes for micropollutant removal in municipal wastewater treatment plants (WWTPs). The sorption efficiency of PAC is reduced with increasing dissolved organic carbon (DOC). Adequate treatment of secondary effluent with 5–10 g DOC m−3 requires 10–20 g PAC m−3 of effluent. Counter-current use of PAC by recycling waste PAC from post-treatment in a contact tank with an additional clarifier to the biology tank improved the overall MP removal by 10 to 50% compared with effluent PAC application alone. A dosage of 15 g PAC m−3 to a full-scale flocculation sand filtration system and recycling the backwash water to the biology tank showed similar MP elimination. Due to an adequate mixing regime and the addition of adapted flocculants, a good retention of the fine fraction of the PAC in the deep-bed filter were observed (1–3 g TSS m−3; TSS: total suspended solids). With double use of PAC, only half of the PAC was required to reach MP removal efficiencies similar to the direct single dosage of PAC to the biology tank. Overall, the application of PAC in WWTPs seems to be an adequate and feasible technology for efficient MP elimination (>80%) from wastewater comparable with post ozonation.


Sign in / Sign up

Export Citation Format

Share Document