105 The effect of biventricular pacing on myocardial function and oxidative metabolism in severe dilated cardiomyopathy

2003 ◽  
Vol 24 (5) ◽  
pp. 3
Author(s):  
J KNUUTI
2007 ◽  
Vol 21 (4) ◽  
pp. 719-730 ◽  
Author(s):  
Valérie Chetboul ◽  
Vassiliki Gouni ◽  
Carolina Carlos Sampedrano ◽  
Renaud Tissier ◽  
Francois Serres ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Daniel Clark ◽  
Giovanni E Davogustto ◽  
Susan P Bell ◽  
RAVINDER MALLUGARI ◽  
William S Bradham ◽  
...  

Introduction: Dilated cardiomyopathy (DCM) is associated with impaired myocardial perfusion reserve and impaired myocardial oxidative metabolism. However, the association between myocardial perfusion reserve and oxidative metabolism, is not fully understood. Hypothesis: Reduced myocardial perfusion reserve is associated with reduced myocardial oxidative metabolism. Methods: Using non-invasive cardiac imaging, we studied 8 DCM patients and 14 normal subjects. Myocardial perfusion reserve index (MPRI) was calculated using cardiac magnetic resonance as the normalized rate of myocardial signal augmentation following gadolinium contrast injection between rest and regadenoson induced stress. Resting oxidative metabolism was calculated as the myocardial mono-exponential decay rate (Kmono) of [ 11 C]acetate by positron emission tomography normalized per unit demand (rate-pressure product, RPP) (Kmono/RPP). Results: MPRI was lower in DCM compared to controls (1.25 ± 0.22 vs 1.59 ± 0.49, p=0.038). Similarly, Kmono/RPP was lower in DCM compared with normal subjects (0.6x10e-3 ± 0.15 x10e-3 vs 1.2x10e-3 ± 0.9x10e-3, p<0.0001). There was a linear relation between Kmono and RPP in normal subjects. However, DCM patients showed no increase in Kmono regardless of RPP (Figure 1A). Kmono/RPP was not significantly related to MPRI in either group (Figure 1B). Conclusions: Patients with DCM exhibit markedly impaired myocardial oxidative metabolism compared to normal subjects. However, this impairment was not quantitatively related to impaired myocardial perfusion reserve. Of the various mechanisms that could explain decrease in oxidative metabolism in DCM, these data suggest that reduced myocardial perfusion is not the principal driver of impaired oxidative metabolism.


2001 ◽  
Vol 280 (4) ◽  
pp. H1653-H1659 ◽  
Author(s):  
Anthony J. Baker ◽  
Charles H. Redfern ◽  
Mark D. Harwood ◽  
Paul C. Simpson ◽  
Bruce R. Conklin

Although increased Gi signaling has been associated with dilated cardiomyopathy in humans, its role is not clear. Our goal was to determine the effects of chronically increased Gi signaling on myocardial function. We studied transgenic mice that expressed a Gi-coupled receptor (Ro1) that was targeted to the heart and regulated by a tetracycline-controlled expression system. Ro1 expression for 8 wk resulted in abnormal contractions of right ventricular muscle strips in vitro. Ro1 expression reduced myocardial force by >60% (from 35 ± 3 to 13 ± 2 mN/mm2, P < 0.001). Nevertheless, sensitivity to extracellular Ca2+ was enhanced. The extracellular [Ca2+] resulting in half-maximal force was lower with Ro1 expression compared with control (0.41 ± 0.05 vs. 0.88 ± 0.05 mM, P < 0.001). Ro1 expression slowed both contraction and relaxation kinetics, increasing the twitch time to peak (143 ± 6 vs. 100 ± 4 ms in control, P < 0.001) and the time to half relaxation (124 ± 6 vs. 75 ± 6 ms in control, P < 0.001). Increased pacing frequency increased contractile force threefold in control myocardium ( P < 0.001) but caused no increase of force in Ro1-expressing myocardium. When stimulation was interrupted with rests, postrest force increased in control myocardium, but there was postrest decay of force in Ro1-expressing myocardium. These results suggest that defects in contractility mediated by Gi signaling may contribute to the development of dilated cardiomyopathy.


Sign in / Sign up

Export Citation Format

Share Document