Effluent nutrient management and resource recovery in intensive rural industries for the protection of natural waters

1999 ◽  
Vol 40 (2) ◽  
1999 ◽  
Vol 40 (2) ◽  
pp. 19-27 ◽  
Author(s):  
T. K. Biswas ◽  
F. R. Higginson ◽  
I. Shannon

Intensive rural industry is developing rapidly in parts of inland Australia. The usually nutrient and salt rich effluent from these sources has traditionally been disposed to both land and water bodies. Since direct water discharge is no longer permitted, a challenge now exists when applying effluent to land especially where the rate of application exceeds crop requirements. Effluent of high volume and concentration of nutrients and/or salts can easily contaminate land and water resources. Predicting the optimum rate of land application of effluent is complicated by the physical, chemical and biological properties of soils. This paper addresses the characteristics of effluents from various intensive rural industries and their potential environmental impacts when irrigated to agricultural land in New South Wales, Australia. To assess the environmental sustainability of effluent reuse in land application, a mathematical model (ERIM) has been developed based on a monthly water balance. ERIM includes historical rainfall and evaporation; the amount of nitrogen and phosphorus introduced; their yearly removal by plants to be grown; amount of applied organic matter; and water holding capacity of soil.


2018 ◽  
Vol 102 (4) ◽  
pp. 8-10
Author(s):  
Fernando García ◽  
Andrés Grasso ◽  
María González Sanjuan ◽  
Adrián Correndo ◽  
Fernando Salvagiotti

Trends over the past 25 years indicate that Argentina’s growth in its grain crop productivity has largely been supported by the depletion of the extensive fertility of its Pampean soils. Long-term research provides insight into sustainable nutrient management strategies ready for wide-scale adoption.


2015 ◽  
Vol 4 (3) ◽  
pp. 460-468
Author(s):  
Yap Chin Ann

The last nutrient management review of black pepper was done in 1968. There is, therefore, a need to develop new technology to improve pepper production and transfer that technology to production site. This experiment was carried out to study the effect of newly developed biochemical fertilizer on some physiological characteristics, yield and soil fertility of pepper. The treatment consisted of T1 (BS): chemical fertilizer (N:12%, P:12%, K:17%); T2 (BK1): biochemical fertilizer F1 N:15%, P:5%, K:14) and T3 (BK2): biochemical fertilizer F2 (N:13%, P:4%, K:12). The biochemical fertilizer F1 out-yielded chemical and biochemical fertilizer F2 by 75.38% and 16.45% respectively with the higher yield being associated with various phonotypical alterations, which are reported here. Significant measureable changes were observed in physiological processes and plant characteristics, such as large leaf area index, more chlorophyll content and high photosynthesis rate coupled with lower transpiration rate in biochemical fertilizer F1(BK1) treatment compared with other treatment. The high fertility level in biochemical fertilizer F1 and biochemical fertilizer F2 (BK2) reflected the important of organic material in improving soil quality. In conclusion, the achieve high growth performance and yield in pepper, chemical fertilizer alone is insufficient whilst combination of organic and inorganic fertilizer with balance nutrient content gave a significant increase in yield and growth of pepper. 


2002 ◽  
Vol 1 (3) ◽  
pp. 341-346
Author(s):  
Viorica Iambartev ◽  
Gheorghe Duca ◽  
Maria Gonta ◽  
Vera Matveevici

Sign in / Sign up

Export Citation Format

Share Document