scholarly journals Square-lattice model and the Jordan–Wigner fermions: the ground-state and thermodynamic properties

2003 ◽  
Vol 320 ◽  
pp. 407-428 ◽  
Author(s):  
Oleg Derzhko ◽  
Taras Verkholyak ◽  
Reimar Schmidt ◽  
Johannes Richter
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Menouer ◽  
O. Miloud Abid ◽  
A. Benzair ◽  
A. Yakoubi ◽  
H. Khachai ◽  
...  

AbstractIn recent years the intermetallic ternary RE2MgGe2 (RE = rare earth) compounds attract interest in a variety of technological areas. We therefore investigate in the present work the structural, electronic, magnetic, and thermodynamic properties of Nd2MgGe2 and Gd2MgGe2. Spin–orbit coupling is found to play an essential role in realizing the antiferromagnetic ground state observed in experiments. Both materials show metallicity and application of a Debye-Slater model demonstrates low thermal conductivity and little effects of the RE atom on the thermodynamic behavior.


2005 ◽  
Vol 74 (6) ◽  
pp. 1702-1705 ◽  
Author(s):  
H. Kageyama ◽  
T. Kitano ◽  
N. Oba ◽  
M. Nishi ◽  
S. Nagai ◽  
...  

2021 ◽  
Vol 67 (6 Nov-Dec) ◽  
Author(s):  
Benjamín Millan ◽  
Ivonne Judith Hernández ◽  
Luis Antonio Pérez ◽  
José Samuel Millan

Recently, within a generalized Hubbard model which includes correlated nearest (∆t) and next-nearest hopping interactions (∆t_3 ), a comparative study between d- and s*- wave superconducting ground states on a square lattice was performed. It was found that the critical temperature of transition T_c (n), as a function of the electron concentration n, reaches a maximum (T_(c-max) at a given optimal doping (n_op) for each value of the ratio (t’)⁄t, where t and t’ are the tight-binding nearest and next-nearest hopping parameter of a square lattice, respectively. From all values obtained for T_(c-max) ((t’)⁄(t,n_op) a global minimum one was encountered for both symmetries. Likewise, in the same space, a minimal ground state energy E_g was also obtained. For d-wave channel both minima are localized around the same optimal doping, however, for s* symmetry, the two minima are located at different electron concentrations. In this work, we additionally study how the p-wave ground-state energy and the critical temperature depend on the hoppings parameters and the electron concentration. The results show that for p-wave, minimum global values of  and  in the space do exist too, they are found around half filling but, as occurs for s*- wave, the minimum of T_(c-max) does not occur at the same point as . Moreover, we present a ground-state phase diagram in the space (t’)⁄(t,n_op) where it is possible to find zones of coexistence and competition between the s*-, p- and d-wave symmetries. Also, an analysis of the shape of the Fermi surface and the single-particle energy, as functions of the wave vector of an electron in the Cooper pair, has been done for different regions of the mentioned space.


2018 ◽  
Vol 87 (6) ◽  
pp. 063703 ◽  
Author(s):  
Akihisa Koga ◽  
Hiroyuki Tomishige ◽  
Joji Nasu

2018 ◽  
Vol 941 ◽  
pp. 1378-1383 ◽  
Author(s):  
Yukihiro Kawamura ◽  
Chihiro Sekine ◽  
Kazuyuki Matsubayashi ◽  
Yoshiya Uwatoko ◽  
Takashi Nishioka

We present transport and thermodynamic properties of CeRu2Al10 controlled by pressure in a vicinity of a critical pressure PC ~ 4GPa, where antiferromagnetic ordering disappears. The resistivity under pressure was measured with DC four terminal method and the AC specific heat under pressure was measured by Joule heating type technique. The pressure was applied by cubic-anvil-apparatus and palm-cubic-anvil-apparatus. The results of AC specific heat indicate TN holds at high temperature up to 3.9 GPa but suddenly disappears above this pressure. We confirmed TN from thermodynamic properties. Although CeRu2Al10 is in a Kondo semiconducting ground state at 4 GPa, temperature dependences of electrical resistivity at 4.6 GPa and 5.9 GPa indicate metallic ground state in these pressures. CeRu2Al10 does not show superconductivity down to 0.7 K at 4.6 GPa and 5.9 GPa.


Sign in / Sign up

Export Citation Format

Share Document