scholarly journals ADIPONECTIN PROMOTES COXSACKIEVIRUS B3 MYOCARDITIS BY SUPPRESSING THE ACUTE ANTIVIRAL IMMUNE RESPONSE

2013 ◽  
Vol 61 (10) ◽  
pp. E1263
Author(s):  
Carsten Skurk ◽  
Alexander Jenke ◽  
Moritz Becher ◽  
Alice Weithäuser ◽  
Karin Klingel ◽  
...  
Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 328 ◽  
Author(s):  
Claudio Salaris ◽  
Melania Scarpa ◽  
Marina Elli ◽  
Alice Bertolini ◽  
Simone Guglielmetti ◽  
...  

SARS-CoV-2 is a newly emerging virus that currently lacks curative treatments. Lactoferrin (LF) is a naturally occurring non-toxic glycoprotein with broad-spectrum antiviral, immunomodulatory and anti-inflammatory effects. In this study, we assessed the potential of LF in the prevention of SARS-CoV-2 infection in vitro. Antiviral immune response gene expression was analyzed by qRT-PCR in uninfected Caco-2 intestinal epithelial cells treated with LF. An infection assay for SARS-CoV-2 was performed in Caco-2 cells treated or not with LF. SARS-CoV-2 titer was determined by qRT-PCR, plaque assay and immunostaining. Inflammatory and anti-inflammatory cytokine production was determined by qRT-PCR. LF significantly induced the expression of IFNA1, IFNB1, TLR3, TLR7, IRF3, IRF7 and MAVS genes. Furthermore, LF partially inhibited SARS-CoV-2 infection and replication in Caco-2 intestinal epithelial cells. Our in vitro data support LF as an immune modulator of the antiviral immune response with moderate effects against SARS-CoV-2 infection.


2021 ◽  
Vol 22 (9) ◽  
pp. 4438
Author(s):  
Jessica Proulx ◽  
Kathleen Borgmann ◽  
In-Woo Park

The ubiquitin (Ub) proteasome system (UPS) plays a pivotal role in regulation of numerous cellular processes, including innate and adaptive immune responses that are essential for restriction of the virus life cycle in the infected cells. Deubiquitination by the deubiquitinating enzyme, deubiquitinase (DUB), is a reversible molecular process to remove Ub or Ub chains from the target proteins. Deubiquitination is an integral strategy within the UPS in regulating survival and proliferation of the infecting virus and the virus-invaded cells. Many viruses in the infected cells are reported to encode viral DUB, and these vial DUBs actively disrupt cellular Ub-dependent processes to suppress host antiviral immune response, enhancing virus replication and thus proliferation. This review surveys the types of DUBs encoded by different viruses and their molecular processes for how the infecting viruses take advantage of the DUB system to evade the host immune response and expedite their replication.


2021 ◽  
Vol 19 (1) ◽  
pp. 39-57
Author(s):  
K.V. Zhdanov ◽  
◽  
R.F. Khamitov ◽  
V.V. Rafalsky ◽  
M.P. Mikhaylusova ◽  
...  

Objective. A multicenter open-label randomized controlled clinical trial was aimed to compare the efficacy of the study drug (SD) containing technologically processed affinity purified antibodies (high dilutions) to IFN-γ, CD4 receptor and histamine (Ergoferon) with oseltamivir, and evaluate the influence of SD on the antiviral immune response in adults with seasonal influenza. Patients and methods. 184 outpatients aged 18–70 with confirmed influenza of mild/moderate severity were included and randomized into 2 groups (in a 1:1 ratio). Patients received SD (Group 1, n = 92) or oseltamivir (Group 2, n = 92), according to the instructions for medical use for 5 days. As the primary endpoint, the percentage of patients with recovery/improvement was assessed (according to the data of the patient's diary on days 2–7 and according to the clinical examination on days 3 and 7). Additionally, the duration and severity of influenza symptoms, the percentage of patients with virus elimination (according to RT-PCR of nasopharyngeal samples), the percentage of patients with complications, the percentage of patients prescribed antipyretic drugs, the change in concentration of T cell (IL-2, IL-18, IFN-γ) and B cell antigen-specific (IL-4, IL-16) immune response regulators in serum, the leukocyte phenotypes on days 1, 3 and 7 were evaluated. Statistical analysis was performed using a “Non-Inferiority” design (or no less efficiency/safety). Intention-to-Treat (ITT) analysis data are presented. Results. According to patients’ self-assessment, 53.3% of patients in Group 1 recovered/improved on the 6th day in the morning and 65.2% – in the evening (vs. 53.3% and 57.6% in Group 2, respectively). There were 73.9% recovered/ improved patients on the 7th day in the morning (vs. 67.4% in Group 2). A generalized analysis showed that the treatment results in both groups were comparable (p < 0.0001). According to objective medical examination, 79.3% of patients in the SD group and 74.0% of patients in the Оseltamivir group recovered/improved on the 7th day (p < 0.0001). The antiviral efficacy of SD was not inferior to oseltamivir, which was confirmed by comparable periods of virus elimination, duration and severity of fever and other influenza symptoms. A moderate activating effect of SD on the immune system was evaluated. A significant, compared to oseltamivir, increase in the concentration of IL-2 and IL-4 on the 3rd day of treatment (p = 0.03 and p = 0.04 vs. the oseltamivir group), and IFN-γ on the 3rd and the 7th days (p = 0.012 and p < 0.0001, respectively, vs. the oseltamivir group). No stimulating effect of SD on the growth and differentiation of immune cells was found. Conclusion. SD is effective and safe in the treatment of patients with influenza. The therapeutic and antiviral efficacy of SD is comparable to that of oseltamivir. The antiviral activity of SD affects the interferon system and the concentration of the cytokines IL-2 and IL-4, regulators of the T and B cell immune response. At the same time, there is no significant stimulation of interferon production with further development of hyporeactivity. Key words: influenza, oseltamivir, therapy, cytokines, Еrgoferon


2019 ◽  
Vol 92 ◽  
pp. 105-115 ◽  
Author(s):  
Yongcan Zhou ◽  
Yang Lei ◽  
Zhenjie Cao ◽  
Xiaojuan Chen ◽  
Yun Sun ◽  
...  

2013 ◽  
Vol 95 (9) ◽  
pp. e59-e61 ◽  
Author(s):  
Mark K. Slifka ◽  
Erika Hammarlund ◽  
Matthew W. Lewis ◽  
Elizabeth A. Poore ◽  
Jon M. Hanifin ◽  
...  

2005 ◽  
Vol 79 (12) ◽  
pp. 7291-7299 ◽  
Author(s):  
Wing-Hong Kwan ◽  
Anna-Marija Helt ◽  
Concepción Marañón ◽  
Jean-Baptiste Barbaroux ◽  
Anne Hosmalin ◽  
...  

ABSTRACT CD14+ interstitial cells reside beneath the epidermis of skin and mucosal tissue and may therefore play an important role in viral infections and the shaping of an antiviral immune response. However, in contrast to dendritic cells (DC) or blood monocytes, these antigen-presenting cells (APC) have not been well studied. We have previously described long-lived CD14+ cells generated from CD34+ hematopoietic progenitors, which may represent model cells for interstitial CD14+ APC. Here, we show that these cells carry DC-SIGN and differentiate into immature DC in the presence of granulocyte-macrophage colony-stimulating factor. We have compared the CD14+ cells and the DC derived from these cells with respect to dengue virus and human immunodeficiency virus type 1 (HIV-1) infection. Both cell types are permissive to dengue virus infection, but the CD14+ cells secrete the anti-inflammatory cytokine interleukin 10 and no tumor necrosis factor alpha. Regarding HIV, the CD14+ cells are permissive to HIV-1, release higher p24 levels than the derived DC, and more efficiently activate HIV Pol-specific CD8+ memory T cells. The CD14+ DC precursors infected with either virus retain their DC differentiation potential. The results suggest that interstitial CD14+ APC may contribute to HIV-1 and dengue virus infection and the shaping of an antiviral immune response.


Sign in / Sign up

Export Citation Format

Share Document