Headways and speeds The road safety issues on motorwaysQuels enjeux de sécurité sur l'autoroute?Temps intervéhiculaires et vitesses

1999 ◽  
Vol 64 ◽  
pp. 3-20 ◽  
Author(s):  
M ARON ◽  
M BIECHELER ◽  
J PEYTAVIN
Keyword(s):  
2003 ◽  
Vol 1819 (1) ◽  
pp. 225-230 ◽  
Author(s):  
Eugene M. Wilson ◽  
Martin E. Lipinski

Practical tools for improving transportation safety are needed worldwide. It has been estimated that motor vehicle–related crashes account for more than 1 million fatalities each year, and the number of serious injuries far exceeds fatalities. Local and low-volume roads are significantly overrepresented in crash statistics. Globally, the road safety audit (RSA) concept has been recognized as an effective tool in identifying and reducing the crash potential of roadways when used to analyze the safety aspects of project plans and designs before completion. In the local rural road arena, many safety issues are associated with existing roadway networks. Many of these networks have developed over time with little or no planning or design. There is a critical need for a practical tool that focuses on the safety of the existing as-built local road network. The RSA review (RSAR) process has been developed for this purpose, giving specific recognition to the functionality of the road being evaluated for safety issues. Significant numbers of safety improvements are needed, and practical approaches to address these needs are crucial. The RSAR tool has the potential to be particularly beneficial to local governments in systematically addressing safety deficiencies on existing rural road networks. In addition, it is a proactive safety tool that has the potential to protect agencies from tort liability since it establishes a record of the organization’s safety agenda. An RSAR methodology that can be adapted by local agencies is presented. A case study illustrating the application of this process is included. Also highlighted is a local rural training program that has been presented in several states for county applications. The focus is on U.S. county applications, but it is recognized that the process has utility for other agencies and has application in other countries. The necessity for training as a key component in the development of a sustainable safety program is emphasized.


Author(s):  
Davide Maggi ◽  
Richard Romano ◽  
Oliver Carsten

Objective A driving simulator study explored how drivers behaved depending on their initial role during transitions between highly automated driving (HAD) and longitudinally assisted driving (via adaptive cruise control). Background During HAD, drivers might issue a take-over request (TOR), initiating a transition of control that was not planned. Understanding how drivers behave in this situation and, ultimately, the implications on road safety is of paramount importance. Method Sixteen participants were recruited for this study and performed transitions of control between HAD and longitudinally assisted driving in a driving simulator. While comparing how drivers behaved depending on whether or not they were the initiators, different handover strategies were presented to analyze how drivers adapted to variations in the authority level they were granted at various stages of the transitions. Results Whenever they initiated the transition, drivers were more engaged with the driving task and less prone to follow the guidance of the proposed strategies. Moreover, initiating a transition and having the highest authority share during the handover made the drivers more engaged with the driving task and attentive toward the road. Conclusion Handover strategies that retained a larger authority share were more effective whenever the automation initiated the transition. Under driver-initiated transitions, reducing drivers’ authority was detrimental for both performance and comfort. Application As the operational design domain of automated vehicles (Society of Automotive Engineers [SAE] Level 3/4) expands, the drivers might very well fight boredom by taking over spontaneously, introducing safety issues so far not considered but nevertheless very important.


2017 ◽  
Vol 42 (1) ◽  
pp. 43-62
Author(s):  
Marcin Budzyński ◽  
Kazimierz Jamroz ◽  
Wojciech Kustra

Abstract In Poland, road inspections were implemented in June 2014 on all national roads. Previous traffic surveys mainly looked at the technical condition of roads, signs and markings; other safety issues were overlooked. The main problem of the inspections is that the qualitative assessment is subjective which affects the classification of the sources of hazard on the road. The paper presents an analysis of the variability of the qualitative assessments of road defects when they are assessed by different teams of inspectors. On this basis, guidelines were developed for the classification of risks based on the relationship between sources of road hazard and the personal and economic losses involved in road accidents. These relationships are quantified using mathematical models to simulate the effect of hazard variability on the consequences of selected road accident causes on sections of the road network.


2021 ◽  
Vol 13 (11) ◽  
pp. 5899
Author(s):  
Yeonsoo Jun ◽  
Juneyoung Park ◽  
Chunho Yeom

This paper evaluates experimental variables for virtual road safety audits (VRSAs) through practical experiments to promote sustainable road safety. VRSAs perform road safety audits using driving simulators (DSs), and all objects in the road environment cannot be experimental variables because of realistic constraints. Therefore, the study evaluates the likelihood of recommendation of VRSA experimental variables by comparing DSs experiments and field reviews to secure sustainable road safety conditions. The net promoter score results evaluated “Tunnel”, “Bridge”, “Underpass”, “Footbridge”, “Traffic island”, “Sign”, “Lane”, “Road marking”, “Traffic light”, “Median barrier”, “Road furniture”, and “Traffic condition” as recommended variables. On the contrary, the “Road pavement”, “Drainage”, “Lighting”, “Vehicle”, “Pedestrian”, “Bicycle”, “Accident”, and “Hazard event” variables were not recommended. The study can be used for decision making in VRSA scenario development as an initial effort to evaluate its experimental variables.


2021 ◽  
Vol 13 (4) ◽  
pp. 2039
Author(s):  
Juan F. Dols ◽  
Jaime Molina ◽  
F. Javier Camacho-Torregrosa ◽  
David Llopis-Castelló ◽  
Alfredo García

The analysis of road safety is critical in road design. Complying to guidelines is not enough to ensure the highest safety levels, so many of them encourage designers to virtually recreate and test their roads, benefitting from the evolution of driving simulators in recent years. However, an accurate recreation of the road and its environment represents a real bottleneck in the process. A very important limitation lies in the diversity of input data, from different sources and requiring specific adaptations for every single simulator. This paper aims at showing a framework for recreating faster virtual scenarios by using an Industry Foundation Classes (IFC)-based file. This methodology was compared to two other conventional methods for developing driving scenarios. The main outcome of this study has demonstrated that with a data exchange file in IFC format, virtual scenarios can be faster designed to carry out safety audits with driving simulators. As a result, the editing, programming, and processing times were substantially reduced using the proposed IFC exchange file format through a BIM (Building Information Modeling) model. This methodology facilitates cost-savings, execution, and optimization resources in road safety analysis.


Author(s):  
Puspa Raj Pant ◽  
Sudhamshu Dahal ◽  
Kannan Krishnaswamy ◽  
Sunil Kumar Joshi ◽  
Julie Mytton
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3661
Author(s):  
Noman Khan ◽  
Khan Muhammad ◽  
Tanveer Hussain ◽  
Mansoor Nasir ◽  
Muhammad Munsif ◽  
...  

Virtual reality (VR) has been widely used as a tool to assist people by letting them learn and simulate situations that are too dangerous and risky to practice in real life, and one of these is road safety training for children. Traditional video- and presentation-based road safety training has average output results as it lacks physical practice and the involvement of children during training, without any practical testing examination to check the learned abilities of a child before their exposure to real-world environments. Therefore, in this paper, we propose a 3D realistic open-ended VR and Kinect sensor-based training setup using the Unity game engine, wherein children are educated and involved in road safety exercises. The proposed system applies the concepts of VR in a game-like setting to let the children learn about traffic rules and practice them in their homes without any risk of being exposed to the outside environment. Thus, with our interactive and immersive training environment, we aim to minimize road accidents involving children and contribute to the generic domain of healthcare. Furthermore, the proposed framework evaluates the overall performance of the students in a virtual environment (VE) to develop their road-awareness skills. To ensure safety, the proposed system has an extra examination layer for children’s abilities evaluation, whereby a child is considered fit for real-world practice in cases where they fulfil certain criteria by achieving set scores. To show the robustness and stability of the proposed system, we conduct four types of subjective activities by involving a group of ten students with average grades in their classes. The experimental results show the positive effect of the proposed system in improving the road crossing behavior of the children.


2021 ◽  
Vol 9 (3) ◽  
pp. 1-22
Author(s):  
Akram Abdel Qader

Image segmentation is the most important process in road sign detection and classification systems. In road sign systems, the spatial information of road signs are very important for safety issues. Road sign segmentation is a complex segmentation task because of the different road sign colors and shapes that make it difficult to use specific threshold. Most road sign segmentation studies do good in ideal situations, but many problems need to be solved when the road signs are in poor lighting and noisy conditions. This paper proposes a hybrid dynamic threshold color segmentation technique for road sign images. In a pre-processing step, the authors use the histogram analysis, noise reduction with a Gaussian filter, adaptive histogram equalization, and conversion from RGB space to YCbCr or HSV color spaces. Next, a segmentation threshold is selected dynamically and used to segment the pre-processed image. The method was tested on outdoor images under noisy conditions and was able to accurately segment road signs with different colors (red, blue, and yellow) and shapes.


Sign in / Sign up

Export Citation Format

Share Document