Integrated Navigation System with OMEGA as Primary Source of Position Information

1973 ◽  
Vol 6 (3) ◽  
pp. 75-82
Author(s):  
Per Bergstad
2018 ◽  
Vol 71 (6) ◽  
pp. 1567-1588 ◽  
Author(s):  
Jiafang Zhu ◽  
Xinlong Wang ◽  
Hengnian Li ◽  
Huan Che ◽  
Qunsheng Li

In order to utilise the position and attitude information of a Celestial Navigation System (CNS) to aid a Strapdown Inertial Navigation System (SINS) and make it possible to achieve long-range and high-precision navigation, a new SINS/CNS integrated navigation scheme based on overall optimal correction is proposed. Firstly, the optimal installation angle of the star sensor is acquired according to the geometric relationship between the refraction stars area and the star sensor's visual field. Secondly, an analytical method to determine position and horizontal reference is introduced. Thirdly, the mathematical model of the SINS/CNS integrated navigation system is established. Finally, some simulations are carried out to compare the navigation performance of the proposed SINS/CNS integrated scheme with that of the traditional gyro-drift-corrected integration scheme. Simulation results indicate that in the proposed scheme, without the aid of SINS, CNS can provide attitude and position information and the errors of the SINS are able to be estimated and corrected efficiently. Therefore, the navigation performance of the proposed SINS/CNS scheme is superior to that of a more traditional scheme in long-range flight.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ming Yan ◽  
Zengcai Wang

The key technology to realize intelligent unmanned coal mining is the strapdown inertial navigation system (SINS); however, the gradual increase of cumulative error during the working process needs to be solved. On the basis of an SINS/odometer (OD)-integrated navigation system, this paper adds magnetometer (MAG)-aided positioning and proposes an SINS/OD/MAG-integrated shearer navigation system. The velocity observation equation is obtained from the speed constraints during shearer movement, and the yaw angle observation equation is obtained from the magnetometer output. The position information of the SINS output is calibrated using these two observations. In order to improve the fault tolerance of the integrated navigation system, an adaptive federated Kalman filter is established to complete the data fusion of the SINS. Experimental results show that the positioning accuracy of the SINS/OD/MAG-integrated navigation system is 75.64% and 74.01% higher in the east and north directions, respectively, than the SINS/OD-integrated navigation system.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yuan Xu ◽  
Tongqian Liu ◽  
Bin Sun ◽  
Yong Zhang ◽  
Siamak Khatibi ◽  
...  

In order to further improve positioning accuracy, this paper proposes an indoor vision/INS integrated mobile robot navigation method using multimodel-based multifrequency Kalman filter. Firstly, to overcome the insufficient accuracy of visual data when a robot turns, a novel multimodel integrated scheme has been investigated for the mobile robots with Mecanum wheels which can make fixed point angled turns. Secondly, a multifrequency Kalman filter has been used to fuse the position information from both the inertial navigation system and the visual navigation system, which overcomes the problem that the filtering period of the integrated navigation system is too long. The proposed multimodel multifrequency Kalman filter gives the root mean square error (RMSE) of 0.0184 m in the direction of east and 0.0977 m in north, respectively. The RMSE of visual navigation system is 0.8925 m in the direction of east and 0.9539 m in north, respectively. Experimental results show that the proposed method is effective.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Huisheng Liu ◽  
Zengcai Wang ◽  
Susu Fang ◽  
Chao Li

A constrained low-cost SINS/OD filter aided with magnetometer is proposed in this paper. The filter is designed to provide a land vehicle navigation solution by fusing the measurements of the microelectromechanical systems based inertial measurement unit (MEMS IMU), the magnetometer (MAG), and the velocity measurement from odometer (OD). First, accelerometer and magnetometer integrated algorithm is studied to stabilize the attitude angle. Next, a SINS/OD/MAG integrated navigation system is designed and simulated, using an adaptive Kalman filter (AKF). It is shown that the accuracy of the integrated navigation system will be implemented to some extent. The field-test shows that the azimuth misalignment angle will diminish to less than 1°. Finally, an outliers detection algorithm is studied to estimate the velocity measurement bias of the odometer. The experimental results show the enhancement in restraining observation outliers that improves the precision of the integrated navigation system.


2013 ◽  
Vol 341-342 ◽  
pp. 896-900
Author(s):  
Bao Jiang Sun ◽  
Yue Xu

Describes briefly ultrasonic positioning system (UPS) and digital magnetic compass (DMC) heading measurement principle,analyzed the advantages and disadvantages of each option. To improve the accuracy of the heading measurement, As the theoretical basis of adaptive Kalman filter, designed a kind of ups and dmc integrated navigation system. Based on both real measurement data, made a simulation experiment and confirmed the feasibility of the navigation system.


Sign in / Sign up

Export Citation Format

Share Document