scholarly journals 432: Pseudomonas aeruginosa LasR loss-of-function mutants evade phagocytosis by CF macrophages despite CFTR triple modulator therapy

2021 ◽  
Vol 20 ◽  
pp. S203
Author(s):  
D. Aridgides ◽  
D. Mellinger ◽  
J. Dessaint ◽  
D. Hogan ◽  
A. Ashare
Open Biology ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 170029 ◽  
Author(s):  
Ke Wang ◽  
Yi-qiang Chen ◽  
May M. Salido ◽  
Gurjeet S. Kohli ◽  
Jin-liang Kong ◽  
...  

Pseudomonas aeruginosa is an opportunistic pathogen that causes severe airway infections in humans. These infections are usually difficult to treat and associated with high mortality rates. While colonizing the human airways, P. aeruginosa could accumulate genetic mutations that often lead to its better adaptability to the host environment. Understanding these evolutionary traits may provide important clues for the development of effective therapies to treat P. aeruginosa infections. In this study, 25 P. aeruginosa isolates were longitudinally sampled from the airways of four ventilator-associated pneumonia (VAP) patients. Pacbio and Illumina sequencing were used to analyse the in vivo evolutionary trajectories of these isolates. Our analysis showed that positive selection dominantly shaped P. aeruginosa genomes during VAP infections and led to three convergent evolution events, including loss-of-function mutations of lasR and mpl , and a pyoverdine-deficient phenotype. Specifically, lasR encodes one of the major transcriptional regulators in quorum sensing, whereas mpl encodes an enzyme responsible for recycling cell wall peptidoglycan. We also found that P. aeruginosa isolated at late stages of VAP infections produce less elastase and are less virulent in vivo than their earlier isolated counterparts, suggesting the short-term in vivo evolution of P. aeruginosa leads to attenuated virulence.


2009 ◽  
Vol 191 (7) ◽  
pp. 2285-2295 ◽  
Author(s):  
F. Heath Damron ◽  
Dongru Qiu ◽  
Hongwei D. Yu

ABSTRACT Mucoidy, or overproduction of the exopolysaccharide known as alginate, in Pseudomonas aeruginosa is a poor prognosticator for lung infections in cystic fibrosis. Mutation of the anti-σ factor MucA is a well-accepted mechanism for mucoid conversion. However, certain clinical mucoid strains of P. aeruginosa have a wild-type (wt) mucA. Here, we describe a loss-of-function mutation in kinB that causes overproduction of alginate in the wt mucA strain PAO1. KinB is the cognate histidine kinase for the transcriptional activator AlgB. Increased alginate production due to inactivation of kinB was correlated with high expression at the alginate-related promoters P algU and P algD . Deletion of alternative σ factor RpoN (σ54) or the response regulator AlgB in kinB mutants decreased alginate production to wt nonmucoid levels. Mucoidy was restored in the kinB algB double mutant by expression of wt AlgB or phosphorylation-defective AlgB.D59N, indicating that phosphorylation of AlgB was not required for alginate overproduction when kinB was inactivated. The inactivation of the DegS-like protease AlgW in the kinB mutant caused loss of alginate production and an accumulation of the hemagglutinin (HA)-tagged MucA. Furthermore, we observed that the kinB mutation increased the rate of HA-MucA degradation. Our results also indicate that AlgW-mediated MucA degradation required algB and rpoN in the kinB mutant. Collectively, these studies indicate that KinB is a negative regulator of alginate production in wt mucA strain PAO1.


2009 ◽  
Vol 191 (18) ◽  
pp. 5785-5792 ◽  
Author(s):  
Rashmi Gupta ◽  
Timothy R. Gobble ◽  
Martin Schuster

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa utilizes two interconnected acyl-homoserine lactone quorum-sensing (acyl-HSL QS) systems, LasRI and RhlRI, to regulate the expression of hundreds of genes. The QS circuitry itself is integrated into a complex network of regulation by other factors. However, our understanding of this network is still unlikely to be complete, as a comprehensive, saturating approach to identifying regulatory components has never been attempted. Here, we utilized a nonredundant P. aeruginosa PA14 transposon library to identify additional genes that regulate QS at the level of LasRI/RhlRI. We initially screened all 5,459 mutants for loss of function in one QS-controlled trait (skim milk proteolysis) and then rescreened attenuated candidates for defects in other QS phenotypes (LasA protease, rhamnolipid, and pyocyanin production) to exclude mutants defective in functions other than QS. We identified several known and novel genes, but only two novel genes, gidA and pcnB, affected all of the traits assayed. We characterized gidA, which exhibited the most striking QS phenotypes, further. This gene is predicted to encode a conserved flavin adenine dinucleotide-binding protein involved in tRNA modification. Inactivation of the gene primarily affected rhlR-dependent QS phenotypes such as LasA, pyocyanin, and rhamnolipid production. GidA affected RhlR protein but not transcript levels and also had no impact on LasR and acyl-HSL production. Overexpression of rhlR in a gidA mutant partially restored QS-dependent phenotypes. Taken together, these results indicate that GidA selectively controls QS gene expression posttranscriptionally via RhlR-dependent and -independent pathways.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009375
Author(s):  
Lisa C. Hennemann ◽  
Shantelle L. LaFayette ◽  
Julien K. Malet ◽  
Perrine Bortolotti ◽  
Tianxiao Yang ◽  
...  

Pseudomonas aeruginosa causes chronic airway infections, a major determinant of lung inflammation and damage in cystic fibrosis (CF). Loss-of-function lasR mutants commonly arise during chronic CF infections, are associated with accelerated lung function decline in CF patients and induce exaggerated neutrophilic inflammation in model systems. In this study, we investigated how lasR mutants modulate airway epithelial membrane bound ICAM-1 (mICAM-1), a surface adhesion molecule, and determined its impact on neutrophilic inflammation in vitro and in vivo. We demonstrated that LasR-deficient strains induce increased mICAM-1 levels in airway epithelial cells compared to wild-type strains, an effect attributable to the loss of mICAM-1 degradation by LasR-regulated proteases and associated with enhanced neutrophil adhesion. In a subacute airway infection model, we also observed that lasR mutant-infected mice displayed greater airway epithelial ICAM-1 expression and increased neutrophilic pulmonary inflammation. Our findings provide new insights into the intricate interplay between lasR mutants, LasR-regulated proteases and airway epithelial ICAM-1 expression, and reveal a new mechanism involved in the exaggerated inflammatory response induced by lasR mutants.


2018 ◽  
Author(s):  
Wenfa Ng

Coping with nutritional stress is essential for cell survival, of which many strategies at the cellular level lend support for ensuring the survival of the population at a particular habitat. One postulated mechanism is swarming motility in bacterial cells, where, upon depletion of nutrients at a locale, cells would coordinate their movement, synthesize more flagella, and secrete lubricants for moving rapidly across surfaces in search for food. Known to engage in swarming motility, Bacillus subtilis and Pseudomonas aeruginosa are two common bacterial species with versatile metabolism that use the motility mode to colonize new habitats with more favourable environmental and nutritional conditions. However, experimental observations of bacteria growth on a variety of agar media revealed that B. subtilis NRS-762 (ATCC 8473) and P. aeruginosa PRD-10 (ATCC 15442) exhibited retarded swarming motility upon entry into stationary phase on solid media. Specifically, B. subtilis NRS-762 colonies exhibited round, wrinkled morphologies compared to complex filamented swarming patterns common in strains able to engage in swarming motility. On the other hand, P. aeruginosa PRD-10 colonies were round, mucoid, and expanded outwards from the colony centre without extending filaments from the centre; thereby, indicating retarded swarming motility. Thus, impaired cellular machinery for swarming motility or mutated and deleted genes likely account for observed retarded swarming motility in B. subtilis NRS-762 and P. aeruginosa PRD-10. More importantly, observations of small filaments extending radially from an expanded colony of P. aeruginosa PRD-10 grown on minimal salts medium supplemented with yeast extract highlighted possible loss of function of effector molecules that transmit cellular decision at swarming motility into movement, while sensory mechanisms feeding into the motility mechanism remained intact. More broadly, observations of impaired swarming motility in B. subtilis NRS-762 and P. aeruginosa PRD-10 in two species otherwise endowed with the motility mode highlighted that additional triggers for swarming motility are likely present, and the motility mode may have been evolutionary selected for other functions in addition to foraging for food in times of nutritional stress.


2020 ◽  
Vol 117 (6) ◽  
pp. 3167-3173 ◽  
Author(s):  
Michelle E. Clay ◽  
John H. Hammond ◽  
Fangfang Zhong ◽  
Xiaolei Chen ◽  
Caitlin H. Kowalski ◽  
...  

Pseudomonas aeruginosa strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR−) strains is increased activity of the transcription factor Anr, relative to their LasR+ counterparts, in low-oxygen conditions. One of the Anr-regulated genes found to be highly induced in LasR− strains was PA14_42860 (PA1673), which we named mhr for microoxic hemerythrin. Purified P. aeruginosa Mhr protein contained the predicted di-iron center and bound molecular oxygen with an apparent Kd of ∼1 µM. Both Anr and Mhr were necessary for fitness in lasR+ and lasR mutant strains in colony biofilms grown in microoxic conditions, and the effects were more striking in the lasR mutant. Among genes in the Anr regulon, mhr was most closely coregulated with the Anr-controlled high-affinity cytochrome c oxidase genes. In the absence of high-affinity cytochrome c oxidases, deletion of mhr no longer caused a fitness disadvantage, suggesting that Mhr works in concert with microoxic respiration. We demonstrate that Anr and Mhr contribute to LasR− strain fitness even in biofilms grown in normoxic conditions. Furthermore, metabolomics data indicate that, in a lasR mutant, expression of Anr-regulated mhr leads to differences in metabolism in cells grown on lysogeny broth or artificial sputum medium. We propose that increased Anr activity leads to higher levels of the oxygen-binding protein Mhr, which confers an advantage to lasR mutants in microoxic conditions.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Fatma Ben Jeddou ◽  
Léna Falconnet ◽  
Alexandre Luscher ◽  
Thissa Siriwardena ◽  
Jean-Louis Reymond ◽  
...  

ABSTRACT Colistin (polymyxin E) is a last-resort antibiotic against multidrug-resistant isolates of Pseudomonas aeruginosa. However, the nephro-toxicity of colistin limits its use, spurring the interest in novel antimicrobial peptides (AMP). Here, we show that the synthetic AMP-dendrimer G3KL (MW 4,531.38 Da, 15 positive charges, MIC = 8 mg/liter) showed faster killing than polymyxin B (Pmx-B) with no detectable resistance selection in P. aeruginosa strain PA14. Spontaneous mutants selected on Pmx-B, harboring loss of function mutations in the PhoQ sensor kinase gene, showed increased Pmx-B MICs and arnB operon expression (4-amino-l-arabinose addition to lipid A), but remained susceptible to dendrimers. Two mutants carrying a missense mutation in the periplasmic loop of the PmrB sensor kinase showed increased MICs for Pmx-B (8-fold) and G3KL (4-fold) but not for the dendrimer T7 (MW 4,885.64 Da, 16 positive charges, MIC = 8 mg/liter). The pmrB mutants showed increased expression of the arnB operon as well as of the speD2-speE2-PA4775 operon, located upstream of pmrAB, and involved in polyamine biosynthesis. Exogenous supplementation with the polyamines spermine and norspermine increased G3KL and T7 MICs in a phoQ mutant background but not in the PA14 wild type. This suggests that both addition of 4-amino-l-arabinose and secretion of polyamines are required to reduce susceptibility to dendrimers, probably neutralizing the negative charges present on the lipid A and the 2-keto-3-deoxyoctulosonic acid (KDO) sugars of the lipopolysaccharide (LPS), respectively. We further show by transcriptome analysis that the dendrimers G3KL and T7 induce adaptive responses through the CprRS two-component system in PA14.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Clayton W. Hall ◽  
Eszter Farkas ◽  
Li Zhang ◽  
Thien-Fah Mah

ABSTRACT Antibiotic tolerance contributes to the inability of standard antimicrobial therapies to clear the chronic Pseudomonas aeruginosa lung infections that often afflict patients with cystic fibrosis (CF). Metabolic potentiation of bactericidal antibiotics with carbon sources has emerged as a promising strategy to resensitize tolerant bacteria to antibiotic killing. Fumarate (FUM), a C4-dicarboxylate, has been recently shown to resensitize tolerant P. aeruginosa to killing by tobramycin (TOB), an aminoglycoside antibiotic, when used in combination (TOB+FUM). Fumarate and other C4-dicarboxylates are taken up intracellularly by transporters regulated by the alternative sigma factor RpoN. Once in the cell, FUM is metabolized, leading to enhanced electron transport chain activity, regeneration of the proton motive force, and increased TOB uptake. In this work, we demonstrate that a ΔrpoN mutant displays impaired FUM uptake and, consequently, nonsusceptibility to TOB+FUM treatment. RpoN was also found to be essential for susceptibility to other aminoglycoside and C4-dicarboxylate combinations. Importantly, RpoN loss-of-function mutations have been documented to evolve in the CF lung, and these loss-of-function alleles can also result in TOB+FUM nonsusceptibility. In a mixed-genotype population of wild-type and ΔrpoN cells, TOB+FUM specifically killed cells with RpoN function and spared the cells that lacked RpoN function. Unlike C4-dicarboylates, both d-glucose and l-arginine were able to potentiate TOB killing of ΔrpoN stationary-phase cells. Our findings raise the question of whether TOB+FUM will be a suitable treatment option in the future for CF patients infected with P. aeruginosa isolates that lack RpoN function.


2009 ◽  
Vol 53 (5) ◽  
pp. 1987-1997 ◽  
Author(s):  
Lucie Vettoretti ◽  
Patrick Plésiat ◽  
Cédric Muller ◽  
Farid El Garch ◽  
Gilles Phan ◽  
...  

ABSTRACT Retrospective analysis of 189 nonredundant strains of Pseudomonas aeruginosa sequentially recovered from the sputum samples of 46 cystic fibrosis (CF) patients over a 10-year period (1998 to 2007) revealed that 53 out of 189 (28%) samples were hypersusceptible to the β-lactam antibiotic ticarcillin (MIC ≤ 4 μg/ml) (phenotype dubbed Tichs). As evidenced by trans-complementation and gene inactivation experiments, the mutational upregulation of the efflux system MexXY was responsible for various degrees of resistance to aminoglycosides in a selection of 11 genotypically distinct strains (gentamicin MICs from 2 to 64 μg/ml). By demonstrating for the first time that the MexXY pump may evolve in CF strains, we found that a mutation leading to an F1018L change in the resistance-nodulation-cell division (RND) transporter MexY was able to increase pump-promoted resistance to aminoglycosides, cefepime, and fluoroquinolones twofold. The inactivation of the mexB gene (which codes for the RND transporter MexB) in the 11 selected strains showed that the Tichs phenotype was due to a mutational or functional loss of function of MexAB-OprM, the multidrug efflux system known to contribute to the natural resistance of P. aeruginosa to β-lactams (e.g., ticarcillin and aztreonam), fluoroquinolones, tetracycline, and novobiocin. Two of the selected strains synthesized abnormally low amounts of the MexB protein, and 3 of 11 strains expressed truncated MexB (n = 2) or MexA (n = 1) polypeptide as a result of mutations in the corresponding genes, while 7 of 11 strains produced wild-type though nonfunctional MexAB-OprM pumps at levels similar to or even higher than that of reference strain PAO1. Overall, our data indicate that while MexXY is necessary for P. aeruginosa to adapt to the hostile environment of the CF lung, the MexAB-OprM pump is dispensable and tends to be lost or inactivated in subpopulations of P. aeruginosa.


2004 ◽  
Vol 186 (19) ◽  
pp. 6341-6350 ◽  
Author(s):  
Timothy B. Doyle ◽  
Andrew C. Hawkins ◽  
Linda L. McCarter

ABSTRACT Flagella act as semirigid helical propellers that are powered by reversible rotary motors. Two membrane proteins, MotA and MotB, function as a complex that acts as the stator and generates the torque that drives rotation. The genome sequence of Pseudomonas aeruginosa PAO1 contains dual sets of motA and motB genes, PA1460-PA1461 (motAB) and PA4954-PA4953 (motCD), as well as another gene, motY (PA3526), which is known to be required for motor function in some bacteria. Here, we show that these five genes contribute to motility. Loss of function of either motAB-like locus was dispensable for translocation in aqueous environments. However, swimming could be entirely eliminated by introduction of combinations of mutations in the two motAB-encoding regions. Mutation of both genes encoding the MotA homologs or MotB homologs was sufficient to abolish motility. Mutants carrying double mutations in nonequivalent genes (i.e., motA motD or motB motC) retained motility, indicating that noncognate components can function together. motY appears to be required for motAB function. The combination of motY and motCD mutations rendered the cells nonmotile. Loss of function of motAB, motY, or motAB motY produced similar phenotypes; although the swimming speed was only reduced to ∼85% of the wild-type speed, translocation in semisolid motility agar and swarming on the surface of solidified agar were severely impeded. Thus, the flagellar motor of P. aeruginosa represents a more complex configuration than the configuration that has been studied in other bacteria, and it enables efficient movement under different circumstances.


Sign in / Sign up

Export Citation Format

Share Document