Chapter 2 Hamiltonian Systems: Periodic and Homoclinic Solutions by Variational Methods

Author(s):  
Thomas Bartsch ◽  
Andrzej Szulkin
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Lili Wan

AbstractThe multiplicity of homoclinic solutions is obtained for a class of the p-Laplacian Hamiltonian systems $\frac{d}{dt}(|\dot{u}(t)|^{p-2}\dot{u}(t))-a(t)|u(t)|^{p-2}u(t)+ \nabla W(t,u(t))=0$ddt(|u˙(t)|p−2u˙(t))−a(t)|u(t)|p−2u(t)+∇W(t,u(t))=0 via variational methods, where $a(t)$a(t) is neither coercive nor bounded necessarily and $W(t,u)$W(t,u) is under new concave–convex conditions. Recent results in the literature are generalized even for $p=2$p=2.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Ziheng Zhang ◽  
Fang-Fang Liao ◽  
Patricia J. Y. Wong

We are concerned with the existence of homoclinic solutions for the following second order nonautonomous singular Hamiltonian systemsu¨+atWuu=0, (HS) where-∞<t<+∞,u=u1,u2, …,uN∈ℝNN≥3,a:ℝ→ℝis a continuous bounded function, and the potentialW:ℝN∖{ξ}→ℝhas a singularity at0≠ξ∈ℝN, andWuuis the gradient ofWatu. The novelty of this paper is that, for the case thatN≥3and (HS) is nonautonomous (neither periodic nor almost periodic), we show that (HS) possesses at least one nontrivial homoclinic solution. Our main hypotheses are the strong force condition of Gordon and the uniqueness of a global maximum ofW. Different from the cases that (HS) is autonomousat≡1or (HS) is periodic or almost periodic, as far as we know, this is the first result concerning the case that (HS) is nonautonomous andN≥3. Besides the usual conditions onW, we need the assumption thata′t<0for allt∈ℝto guarantee the existence of homoclinic solution. Recent results in the literature are generalized and significantly improved.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Xiaofang Meng ◽  
Yongkun Li

We are concerned with a class of singular Hamiltonian systems on time scales. Some results on the existence of periodic solutions are obtained for the system under consideration by means of the variational methods and the critical point theory.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Juhong Kuang

We deal with the quasi-periodic solutions of the following second-order Hamiltonian systemsx¨(t)=∇F(t,x(t)), wherex(t)=(x1(t),…,xN(t)), and we present a new approach via variational methods and Minmax method to obtain the existence of quasi-periodic solutions to the above equation.


Sign in / Sign up

Export Citation Format

Share Document