Endometriosis Should Be Suppressed for 6–12 Weeks before Frozen Embryo Transfer

2021 ◽  
pp. 109-110
Author(s):  
Tom Gunnar Tanbo
The Lancet ◽  
2019 ◽  
Vol 393 (10178) ◽  
pp. 1264-1265 ◽  
Author(s):  
Christos Coutifaris

Author(s):  
Nathalie F. Wang ◽  
Leif Bungum ◽  
Sven O. Skouby

Abstract The need for luteal phase support in IVF/ICSI is well established. A large effort has been made in the attempt to identify the optimal type, start, route, dosage and duration of luteal phase support for IVF/ICSI and frozen embryo transfer. These questions are further complicated by the different types of stimulation protocols and ovulation triggers used in ART. The aim of this review is to supply a comprehensive overview of the available types of luteal phase support, and the indications for their use. A review of the literature was carried out in the effort to find the optimal luteal phase support regimen with regards to pregnancy related outcomes and short and long term safety. The results demonstrate that vaginal, intramuscular, subcutaneous and rectal progesterone are equally effective as luteal phase support in IVF/ICSI. GnRH agonists and oral dydrogesterone are new and promising treatment modalities but more research is needed. hCG and estradiol are not recommended for luteal phase support. More research is needed to establish the most optimal luteal phase support in frozen embryo transfer cycles, but progesterone has been shown to improve live birth rate in some studies. Luteal phase support should be commenced between the evening of the day of oocyte retrieval, and day three after oocyte retrieval and it should be continued at least until the day of positive pregnancy test. So, in conclusion still more large and well-designed RCT’s are needed to establish the most optimal luteal phase support in each stimulation protocol, and especially in frozen embryo transfer.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alessio Paffoni ◽  
Marco Reschini ◽  
Valerio Pisaturo ◽  
Cristina Guarneri ◽  
Simone Palini ◽  
...  

Abstract Background Total fertilization failure represents a particularly frustrating condition for couples undergoing in vitro fertilization. With the aim of reducing the occurrence of total fertilization failure, intracytoplasmic sperm injection (ICSI) has become the first choice over conventional in vitro fertilization (IVF) procedures although evidence of improved results is still debated and its use in couples without male factor infertility is not recommended. Among the strategies potentially useful to promote the use of conventional IVF, we herein call attention to the late rescue ICSI, which consists in performing ICSI after 18–24 h from conventional insemination on oocytes that show no signs of fertilization. This treatment has however been reported to be associated with a low success rate until recent observations that embryos derived from late rescue ICSI may be transferred after cryopreservation in a frozen-thawed cycle with improved results. The aim of the present study was to assess whether frozen embryos deriving from rescue ICSI performed about 24 h after conventional IVF may represent a valuable option for couples experiencing fertilization failure. Methods A systematic review on the efficacy of late rescue ICSI was performed consulting PUBMED and EMBASE. Results Including twenty-two original studies, we showed that clinical pregnancy rate per embryo transfer and implantation rate obtainable with fresh embryo transfers after rescue ICSI are not satisfactory being equal to 10 and 5%, respectively. The transfer of cryopreserved rescue ICSI embryos seems to offer a substantial improvement of success rates, with pregnancy rate per embryo transfer and implantation rate equal to 36 and 18%, respectively. Coupling rescue ICSI with frozen embryo transfer may ameliorate the clinical pregnancy rate for embryo transfer with an Odds Ratio = 4.7 (95% CI:2.6–8.6). Conclusion Results of the present review support the idea that r-ICSI coupled with frozen embryo transfer may overcome most of the technical and biological issues associated with fresh transfer after late r-ICSI, thus possibly representing an efficient procedure for couples experiencing fertilization failure following conventional IVF cycles. Trial registration Prospero registration ID: CRD42021239026.


2021 ◽  
Author(s):  
Manuel Álvarez ◽  
Sofía Gaggiotti-Marre ◽  
Francisca Martínez ◽  
Lluc Coll ◽  
Sandra García ◽  
...  

Abstract STUDY QUESTION Does an individualised luteal phase support (iLPS), according to serum progesterone (P4) level the day prior to euploid frozen embryo transfer (FET), improve pregnancy outcomes when started on the day previous to embryo transfer? SUMMARY ANSWER Patients with low serum P4 the day prior to euploid FET can benefit from the addition of daily subcutaneous P4 injections (Psc), when started the day prior to FET, and achieve similar reproductive outcomes compared to those with initial adequate P4 levels. WHAT IS KNOWN ALREADY The ratio between FET/IVF has spectacularly increased in the last years mainly thanks to the pursuit of an ovarian hyperstimulation syndrome free clinic and the development of preimplantation genetic testing (PGT). There is currently a big concern regarding the endometrial preparation for FET, especially in relation to serum P4 levels around the time of embryo transfer. Several studies have described impaired pregnancy outcomes in those patients with low P4 levels around the time of FET, considering 10 ng/ml as one of the most accepted reference values. To date, no prospective study has been designed to compare the reproductive outcomes between patients with adequate P4 the day previous to euploid FET and those with low, but restored P4 levels on the transfer day after iLPS through daily Psc started on the day previous to FET. STUDY DESIGN, SIZE, DURATION A prospective observational study was conducted at a university-affiliated fertility centre between November 2018 and January 2020 in patients undergoing PGT for aneuploidies (PGT-A) IVF cycles and a subsequent FET under hormone replacement treatment (HRT). A total of 574 cycles (453 patients) were analysed: 348 cycles (leading to 342 euploid FET) with adequate P4 on the day previous to FET, and 226 cycles (leading to 220 euploid FET) under iLPS after low P4 on the previous day to FET, but restored P4 levels on the transfer day. PARTICIPANTS/MATERIALS, SETTING, METHODS Overall we included 574 HRT FET cycles (453 patients). Standard HRT was used for endometrial preparation. P4 levels were measured the day previous to euploid FET. P4 > 10.6 ng/ml was considered as adequate and euploid FET was performed on the following day (FET Group 1). P4 < 10.6 ng/ml was considered as low, iLPS was added in the form of daily Psc injections, and a new P4 analysis was performed on the following day. FET was only performed on the same day when a restored P4 > 10.6 ng/ml was achieved (98.2% of cases) (FET Group 2). MAIN RESULTS AND THE ROLE OF CHANCE Patient’s demographics and cycle parameters were comparable between both euploid FET groups (FET Group 1 and FET Group 2) in terms of age, weight, oestradiol and P4 levels and number of embryos transferred. No statistically significant differences were found in terms of clinical pregnancy rate (56.4% vs 59.1%: rate difference (RD) −2.7%, 95% CI [−11.4; 6.0]), ongoing pregnancy rate (49.4% vs 53.6%: RD −4.2%, 95% CI [−13.1; 4.7]) or live birth rate (49.1% vs 52.3%: RD −3.2%, 95% CI [−12; 5.7]). No significant differences were also found according to miscarriage rate (12.4% vs 9.2%: RD 3.2%, 95% CI [−4.3; 10.7]). LIMITATIONS, REASONS FOR CAUTION Only iLPS through daily Psc was evaluated. The time for Psc injection was not stated and no serum P4 determinations were performed once the pregnancy was achieved. WIDER IMPLICATIONS OF THE FINDINGS Our study provides information regarding an ‘opportunity window’ for improved ongoing pregnancy rates and miscarriage rates through a daily Psc injection in cases of inadequate P4 levels the day previous to FET (P4 < 10.6 ng/ml) and restored values the day of FET (P4 > 10.6 ng/ml). Only euploid FET under HRT were considered, avoiding one of the main reasons of miscarriage and implantation failure and overcoming confounding factors such as female age, embryo quality or ovarian stimulation protocols. STUDY FUNDING/COMPETING INTEREST(S) No external funding was received. B.C. reports personal fees from MSD, Merck Serono, Ferring Pharmaceuticals, IBSA and Gedeon Richter outside the submitted work. N.P. reports grants and personal fees from MSD, Merck Serono, Ferring Pharmaceuticals, Theramex and Besins International and personal fees from IBSA and Gedeon Richter outside the submitted work. The remaining authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER NCT03740568.


Sign in / Sign up

Export Citation Format

Share Document