On gradual-impulse control of continuous-time Markov decision processes with exponential utility

2021 ◽  
Vol 53 (2) ◽  
pp. 301-334
Author(s):  
Xin Guo ◽  
Aiko Kurushima ◽  
Alexey Piunovskiy ◽  
Yi Zhang

AbstractWe consider a gradual-impulse control problem of continuous-time Markov decision processes, where the system performance is measured by the expectation of the exponential utility of the total cost. We show, under natural conditions on the system primitives, the existence of a deterministic stationary optimal policy out of a more general class of policies that allow multiple simultaneous impulses, randomized selection of impulses with random effects, and accumulation of jumps. After characterizing the value function using the optimality equation, we reduce the gradual-impulse control problem to an equivalent simple discrete-time Markov decision process, whose action space is the union of the sets of gradual and impulsive actions.

2015 ◽  
Vol 47 (1) ◽  
pp. 106-127 ◽  
Author(s):  
François Dufour ◽  
Alexei B. Piunovskiy

In this paper our objective is to study continuous-time Markov decision processes on a general Borel state space with both impulsive and continuous controls for the infinite time horizon discounted cost. The continuous-time controlled process is shown to be nonexplosive under appropriate hypotheses. The so-called Bellman equation associated to this control problem is studied. Sufficient conditions ensuring the existence and the uniqueness of a bounded measurable solution to this optimality equation are provided. Moreover, it is shown that the value function of the optimization problem under consideration satisfies this optimality equation. Sufficient conditions are also presented to ensure on the one hand the existence of an optimal control strategy, and on the other hand the existence of a ε-optimal control strategy. The decomposition of the state space into two disjoint subsets is exhibited where, roughly speaking, one should apply a gradual action or an impulsive action correspondingly to obtain an optimal or ε-optimal strategy. An interesting consequence of our previous results is as follows: the set of strategies that allow interventions at time t = 0 and only immediately after natural jumps is a sufficient set for the control problem under consideration.


2015 ◽  
Vol 47 (01) ◽  
pp. 106-127 ◽  
Author(s):  
François Dufour ◽  
Alexei B. Piunovskiy

In this paper our objective is to study continuous-time Markov decision processes on a general Borel state space with both impulsive and continuous controls for the infinite time horizon discounted cost. The continuous-time controlled process is shown to be nonexplosive under appropriate hypotheses. The so-called Bellman equation associated to this control problem is studied. Sufficient conditions ensuring the existence and the uniqueness of a bounded measurable solution to this optimality equation are provided. Moreover, it is shown that the value function of the optimization problem under consideration satisfies this optimality equation. Sufficient conditions are also presented to ensure on the one hand the existence of an optimal control strategy, and on the other hand the existence of a ε-optimal control strategy. The decomposition of the state space into two disjoint subsets is exhibited where, roughly speaking, one should apply a gradual action or an impulsive action correspondingly to obtain an optimal or ε-optimal strategy. An interesting consequence of our previous results is as follows: the set of strategies that allow interventions at time t = 0 and only immediately after natural jumps is a sufficient set for the control problem under consideration.


2015 ◽  
Vol 47 (4) ◽  
pp. 1064-1087 ◽  
Author(s):  
Xianping Guo ◽  
Xiangxiang Huang ◽  
Yonghui Huang

In this paper we focus on the finite-horizon optimality for denumerable continuous-time Markov decision processes, in which the transition and reward/cost rates are allowed to be unbounded, and the optimality is over the class of all randomized history-dependent policies. Under mild reasonable conditions, we first establish the existence of a solution to the finite-horizon optimality equation by designing a technique of approximations from the bounded transition rates to unbounded ones. Then we prove the existence of ε (≥ 0)-optimal Markov policies and verify that the value function is the unique solution to the optimality equation by establishing the analog of the Itô-Dynkin formula. Finally, we provide an example in which the transition rates and the value function are all unbounded and, thus, obtain solutions to some of the unsolved problems by Yushkevich (1978).


2015 ◽  
Vol 47 (04) ◽  
pp. 1064-1087 ◽  
Author(s):  
Xianping Guo ◽  
Xiangxiang Huang ◽  
Yonghui Huang

In this paper we focus on the finite-horizon optimality for denumerable continuous-time Markov decision processes, in which the transition and reward/cost rates are allowed to be unbounded, and the optimality is over the class of all randomized history-dependent policies. Under mild reasonable conditions, we first establish the existence of a solution to the finite-horizon optimality equation by designing a technique of approximations from the bounded transition rates to unbounded ones. Then we prove the existence of ε (≥ 0)-optimal Markov policies and verify that the value function is the unique solution to the optimality equation by establishing the analog of the Itô-Dynkin formula. Finally, we provide an example in which the transition rates and the value function are all unbounded and, thus, obtain solutions to some of the unsolved problems by Yushkevich (1978).


2002 ◽  
Vol 43 (4) ◽  
pp. 541-557 ◽  
Author(s):  
Xianping Guo ◽  
Weiping Zhu

AbstractIn this paper, we consider denumerable state continuous time Markov decision processes with (possibly unbounded) transition and cost rates under average criterion. We present a set of conditions and prove the existence of both average cost optimal stationary policies and a solution of the average optimality equation under the conditions. The results in this paper are applied to an admission control queue model and controlled birth and death processes.


Sign in / Sign up

Export Citation Format

Share Document