The integrability of symplectic twist maps without conjugate points

2019 ◽  
Vol 41 (1) ◽  
pp. 48-65
Author(s):  
MARC ARCOSTANZO

It is proved that a symplectic twist map of the cotangent bundle $T^{\ast }\mathbb{T}^{d}$ of the $d$-dimensional torus that is without conjugate points is $C^{0}$-integrable, that is  $T^{\ast }\mathbb{T}^{d}$ is foliated by a family of invariant $C^{0}$ Lagrangian graphs.

1998 ◽  
Vol 18 (3) ◽  
pp. 725-730
Author(s):  
KARL FRIEDRICH SIBURG

According to a theorem of Moser, every monotone twist map $\varphi$ on the cylinder ${\Bbb S}^1\times {\Bbb R}$, which is integrable outside a compact set, is the time-1-map $\varphi_H^1$ of a fibrewise convex Hamiltonian $H$. In this paper we prove that if this particular flow $\varphi_H^t$ is also integrable outside a compact set, then $\varphi$ has to be integrable on the whole cylinder (and vice versa, of course). From this dynamical point of view, integrable twist maps appear to be quite rigid.As is shown in the appendix, an analogous rigidity result becomes trivial in higher dimensions.


1988 ◽  
Vol 8 (2) ◽  
pp. 241-310 ◽  
Author(s):  
P. Le Calvez

AbstractWe study dissipative twist maps of the annulus, following the ideas of G. D. Birkhoff explained in an article of 1932.In the first part, we give complete and rigorous proofs of the results of this article. We define the Birkhoff attractor of a dissipative twist map which has an attracting bounded annulus, we give its main properties and we define its upper and lower rotation numbers.In the second part we give further results on these sets, thus we show that they often coincide with the closure of a hyperbolic periodic point and that they can contain an infinite number of sinks. We also show that the Birkhoff attractors don't depend on a continuous way on the maps.


1994 ◽  
Vol 14 (4) ◽  
pp. 807-815 ◽  
Author(s):  
Leonardo Mora

AbstractWe prove that an area-preserving twist map having an invariant curve, can be approximated by a twist map exhibiting a Birkhoff-Hénon attractor. This is done by showing that the invariant curve can be perturbed into a saddle-node cycle with criticalities and by using a recent result reported by Diaz, Rocha and Viana.


1991 ◽  
Vol 11 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Irwin Jungreis

AbstractWe present an existence theorem for certain kinds of orbits of a monotone twist map and use it to obtain a criterion for proving that there are no invariant circles with a certain range of rotation numbers. We have used this criterion to prove (computer assisted) that the standard map has no invariant circles for several parameter values includingk= 0.9718.


1993 ◽  
Vol 03 (01) ◽  
pp. 165-185 ◽  
Author(s):  
ARTURO OLVERA ◽  
CARLES SIMÓ

We consider a perturbed twist map when the perturbation is big enough to destroy the invariant rotational curve (IRC) with a given irrational rotation number. Then an invariant Cantorian set appears. From another point of view, the destruction of the IRC is associated with the appearance of heteroclinic connections between hyperbolic periodic points. Furthermore the destruction of the IRC is also associated with the existence of non-Birkhoff orbits. In this paper we relate the different approaches. In order to explain the creation of non-Birkhoff orbits, we provide qualitative and quantitative models. We show the existence of elliptic non-Birkhoff periodic orbits for an open set of values of the perturbative parameter. The bifurcations giving rise to the elliptic non-Birkhoff orbits and other related bifurcations are analysed. In the last section, we show a celestial mechanics example displaying the described behavior.


2012 ◽  
Vol 33 (3) ◽  
pp. 693-712 ◽  
Author(s):  
M.-C. ARNAUD

AbstractWe consider locally minimizing measures for conservative twist maps of the $d$-dimensional annulus and for Tonelli Hamiltonian flows defined on a cotangent bundle $T^*M$. For weakly hyperbolic measures of such type (i.e. measures with no zero Lyapunov exponents), we prove that the mean distance/angle between the stable and unstable Oseledets bundles gives an upper bound on the sum of the positive Lyapunov exponents and a lower bound on the smallest positive Lyapunov exponent. We also prove some more precise results.


1995 ◽  
Vol 10 (34) ◽  
pp. 2619-2631 ◽  
Author(s):  
S.A. FROLOV

It is known that to get the usual Hamiltonian formulation of lattice Yang-Mills theory in the temporal gauge A0=0 one should place on each link a cotangent bundle of a Lie group. The cotangent bundle may be considered as a limiting case of a so-called Heisenberg double of a Lie group which is one of the basic objects in the theory of Lie-Poisson and quantum groups. It is shown in the paper that there is a generalization of the usual Hamiltonian formulation to the case of the Heisenberg double. The physical phase space of the (1+1)-dimensional γ-deformed Yang-Mills model is proved to be equivalent to the moduli space of flat connections on a two-dimensional torus.


2004 ◽  
Vol 141 (1) ◽  
pp. 235-247 ◽  
Author(s):  
M. L. Bialy ◽  
R. S. MacKay
Keyword(s):  

2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Anna Pascoletti ◽  
Fabio Zanolin

In this paper we reconsider, in a purely topological framework, the concept of bend-twist map previously studied in the analytic setting by Tongren Ding in (2007). We obtain some results about the existence and multiplicity of fixed points which are related to the classical Poincaré-Birkhoff twist theorem for area-preserving maps of the annulus; however, in our approach, like in Ding (2007), we do not require measure-preserving conditions. This makes our theorems in principle applicable to nonconservative planar systems. Some of our results are also stable for small perturbations. Possible applications of the fixed point theorems for topological bend-twist maps are outlined in the last section.


2013 ◽  
Vol 13 (1) ◽  
pp. 19-41 ◽  
Author(s):  
M.-C. Arnaud

AbstractVery few things are known about the curves that are at the boundary of the instability zones of symplectic twist maps. It is known that in general they have an irrational rotation number and that they cannot be KAM curves. We address the following questions. Can they be very smooth? Can they be non-${C}^{1} $?Can they have a Diophantine or a Liouville rotation number? We give a partial answer for${C}^{1} $and${C}^{2} $twist maps.In Theorem 1, we construct a${C}^{2} $symplectic twist map$f$of the annulus that has an essential invariant curve$\Gamma $such that$\bullet $ $\Gamma $is not differentiable;$\bullet $the dynamics of${f}_{\vert \Gamma } $is conjugated to the one of a Denjoy counter-example;$\bullet $ $\Gamma $is at the boundary of an instability zone for$f$.Using the Hayashi connecting lemma, we prove in Theroem 2 that any symplectic twist map restricted to an essential invariant curve can be embedded as the dynamics along a boundary of an instability zone for some${C}^{1} $symplectic twist map.


Sign in / Sign up

Export Citation Format

Share Document