scholarly journals Wind speed inference from environmental flow–structure interactions. Part 2. Leveraging unsteady kinematics

Flow ◽  
2022 ◽  
Vol 2 ◽  
Author(s):  
Jennifer L. Cardona ◽  
John O. Dabiri

Abstract This work explores the relationship between wind speed and time-dependent structural motion response as a means of leveraging the rich information visible in flow–structure interactions for anemometry. We build on recent work by Cardona, Bouman and Dabiri (Flow, vol. 1, 2021, E4), which presented an approach using mean structural bending. Here, we present the amplitude of the dynamic structural sway as an alternative signal that can be used when mean bending is small or inconvenient to measure. A force balance relating the instantaneous loading and instantaneous deflection yields a relationship between the incident wind speed and the amplitude of structural sway. This physical model is applied to two field datasets comprising 13 trees of 4 different species exposed to ambient wind conditions. Model generalization to the diverse test structures is achieved through normalization with respect to a reference condition. The model agrees well with experimental measurements of the local wind speed, suggesting that tree sway amplitude can be used as an indirect measurement of mean wind speed, and is applicable to a broad variety of diverse trees.

Author(s):  
Yagya Dutta Dwivedi ◽  
Vasishta Bhargava Nukala ◽  
Satya Prasad Maddula ◽  
Kiran Nair

Abstract Atmospheric turbulence is an unsteady phenomenon found in nature and plays significance role in predicting natural events and life prediction of structures. In this work, turbulence in surface boundary layer has been studied through empirical methods. Computer simulation of Von Karman, Kaimal methods were evaluated for different surface roughness and for low (1%), medium (10%) and high (50%) turbulence intensities. Instantaneous values of one minute time series for longitudinal turbulent wind at mean wind speed of 12 m/s using both spectra showed strong correlation in validation trends. Influence of integral length scales on turbulence kinetic energy production at different heights is illustrated. Time series for mean wind speed of 12 m/s with surface roughness value of 0.05 m have shown that variance for longitudinal, lateral and vertical velocity components were different and found to be anisotropic. Wind speed power spectral density from Davenport and Simiu profiles have also been calculated at surface roughness of 0.05 m and compared with k−1 and k−3 slopes for Kolmogorov k−5/3 law in inertial sub-range and k−7 in viscous dissipation range. At high frequencies, logarithmic slope of Kolmogorov −5/3rd law agreed well with Davenport, Harris, Simiu and Solari spectra than at low frequencies.


2018 ◽  
Vol 7 (2) ◽  
pp. 139-150 ◽  
Author(s):  
Adekunlé Akim Salami ◽  
Ayité Sénah Akoda Ajavon ◽  
Mawugno Koffi Kodjo ◽  
Seydou Ouedraogo ◽  
Koffi-Sa Bédja

In this article, we introduced a new approach based on graphical method (GPM), maximum likelihood method (MLM), energy pattern factor method (EPFM), empirical method of Justus (EMJ), empirical method of Lysen (EML) and moment method (MOM) using the even or odd classes of wind speed series distribution histogram with 1 m/s as bin size to estimate the Weibull parameters. This new approach is compared on the basis of the resulting mean wind speed and its standard deviation using seven reliable statistical indicators (RPE, RMSE, MAPE, MABE, R2, RRMSE and IA). The results indicate that this new approach is adequate to estimate Weibull parameters and can outperform GPM, MLM, EPF, EMJ, EML and MOM which uses all wind speed time series data collected for one period. The study has also found a linear relationship between the Weibull parameters K and C estimated by MLM, EPFM, EMJ, EML and MOM using odd or even class wind speed time series and those obtained by applying these methods to all class (both even and odd bins) wind speed time series. Another interesting feature of this approach is the data size reduction which eventually leads to a reduced processing time.Article History: Received February 16th 2018; Received in revised form May 5th 2018; Accepted May 27th 2018; Available onlineHow to Cite This Article: Salami, A.A., Ajavon, A.S.A., Kodjo, M.K. , Ouedraogo, S. and Bédja, K. (2018) The Use of Odd and Even Class Wind Speed Time Series of Distribution Histogram to Estimate Weibull Parameters. Int. Journal of Renewable Energy Development 7(2), 139-150.https://doi.org/10.14710/ijred.7.2.139-150


Author(s):  
François Freddy Ateba ◽  
Manuel Febrero-Bande ◽  
Issaka Sagara ◽  
Nafomon Sogoba ◽  
Mahamoudou Touré ◽  
...  

Mali aims to reach the pre-elimination stage of malaria by the next decade. This study used functional regression models to predict the incidence of malaria as a function of past meteorological patterns to better prevent and to act proactively against impending malaria outbreaks. All data were collected over a five-year period (2012–2017) from 1400 persons who sought treatment at Dangassa’s community health center. Rainfall, temperature, humidity, and wind speed variables were collected. Functional Generalized Spectral Additive Model (FGSAM), Functional Generalized Linear Model (FGLM), and Functional Generalized Kernel Additive Model (FGKAM) were used to predict malaria incidence as a function of the pattern of meteorological indicators over a continuum of the 18 weeks preceding the week of interest. Their respective outcomes were compared in terms of predictive abilities. The results showed that (1) the highest malaria incidence rate occurred in the village 10 to 12 weeks after we observed a pattern of air humidity levels >65%, combined with two or more consecutive rain episodes and a mean wind speed <1.8 m/s; (2) among the three models, the FGLM obtained the best results in terms of prediction; and (3) FGSAM was shown to be a good compromise between FGLM and FGKAM in terms of flexibility and simplicity. The models showed that some meteorological conditions may provide a basis for detection of future outbreaks of malaria. The models developed in this paper are useful for implementing preventive strategies using past meteorological and past malaria incidence.


Flow ◽  
2021 ◽  
Vol 1 ◽  
Author(s):  
Jennifer L. Cardona ◽  
Katherine L. Bouman ◽  
John O. Dabiri

Graphical Abstract


2004 ◽  
Vol 29 (14) ◽  
pp. 2111-2131 ◽  
Author(s):  
Hafzullah Aksoy ◽  
Z Fuat Toprak ◽  
Ali Aytek ◽  
N Erdem Ünal

2001 ◽  
Vol 123 (4) ◽  
pp. 339-345 ◽  
Author(s):  
P. J. Moriarty ◽  
A. J. Eggers, ◽  
K. Chaney ◽  
W. E. Holley

The effects of rotor scale and control system lag were examined for a variable-speed wind turbine. The scale study was performed on a teetered rotor with radii ranging between 22.5m and 33.75m. A 50% increase in radius more than doubled the rated power and annual energy capture. Using blade pitch to actively control fluctuating flatwise moments allowed for significant reductions in blade mass for a fixed fatigue life. A blade operated in closed-loop mode with a 33.75m radius weighed less than an open-loop blade with a 22.5m radius while maintaining the same fatigue life of 5×109 rotations. Actuator lag reduced the effectiveness of the control system. However, 50% reductions in blade mass were possible even when implementing a relatively slow actuator with a 1 sec. time constant. Other practical limits on blade mass may include fatigue from start/stop cycles, non-uniform turbulence, tower wake effects, and wind shear. The more aggressive control systems were found to have high control accelerations near 60 deg/s2, which may be excessive for realistic actuators. Two time lags were introduced into the control system when mean wind speed was estimated in a rapidly changing wind environment. The first lag was the length of time needed to determine mean wind speed, and therefore the mean control settings. The second was the frequency at which these mean control settings were changed. Preliminary results indicate that quickly changing the mean settings (every 10 seconds) and using a moderate length mean averaging time (60 seconds) resulted in the longest fatigue life. It was discovered that large power fluctuations occurred during open-loop operation which could cause sizeable damage to a realistic turbine generator. These fluctuations are reduced by one half or more when aerodynamic loads are actively controlled.


2015 ◽  
Vol 2 (1) ◽  
pp. 25-36
Author(s):  
Otieno Fredrick Onyango ◽  
Sibomana Gaston ◽  
Elie Kabende ◽  
Felix Nkunda ◽  
Jared Hera Ndeda

Wind speed and wind direction are the most important characteristics for assessing wind energy potential of a location using suitable probability density functions. In this investigation, a hybrid-Weibull probability density function was used to analyze data from Kigali, Gisenyi, and Kamembe stations. Kigali is located in the Eastern side of Rwanda while Gisenyi and Kamembe are to the West. On-site hourly wind speed and wind direction data for the year 2007 were analyzed using Matlab programmes. The annual mean wind speed for Kigali, Gisenyi, and Kamembe sites were determined as 2.36m/s, 2.95m/s and 2.97m/s respectively, while corresponding dominant wind directions for the stations were ,  and  respectively. The annual wind power density of Kigali was found to be  while the power densities for Gisenyi and Kamembe were determined as and . It is clear, the investigated regions are dominated by low wind speeds thus are suitable for small-scale wind power generation especially at Kamembe site.


2019 ◽  
Vol 76 (11) ◽  
pp. 3455-3484 ◽  
Author(s):  
Carsten Abraham ◽  
Adam H. Monahan

Abstract The atmospheric nocturnal stable boundary layer (SBL) can be classified into two distinct regimes: the weakly SBL (wSBL) with sustained turbulence and the very SBL (vSBL) with weak and intermittent turbulence. A hidden Markov model (HMM) analysis of the three-dimensional state-variable space of Reynolds-averaged mean dry static stability, mean wind speed, and wind speed shear is used to classify the SBL into these two regimes at nine different tower sites, in order to study long-term regime occupation and transition statistics. Both Reynolds-averaged mean data and measures of turbulence intensity (eddy variances) are separated in a physically meaningful way. In particular, fluctuations of the vertical wind component are found to be much smaller in the vSBL than in the wSBL. HMM analyses of these data using more than two SBL regimes do not result in robust results across measurement locations. To identify which meteorological state variables carry the information about regime occupation, the HMM analyses are repeated using different state-variable subsets. Reynolds-averaged measures of turbulence intensity (such as turbulence kinetic energy) at any observed altitude hold almost the same information as the original set, without adding any additional information. In contrast, both stratification and shear depend on surface information to capture regime transitions accurately. Use of information only in the bottom 10 m of the atmosphere is sufficient for HMM analyses to capture important information about regime occupation and transition statistics. It follows that the commonly measured 10-m wind speed is potentially a good indicator of regime occupation.


2021 ◽  
Vol 8 (2) ◽  
pp. 205395172110407
Author(s):  
Katie Shilton ◽  
Emanuel Moss ◽  
Sarah A. Gilbert ◽  
Matthew J. Bietz ◽  
Casey Fiesler ◽  
...  

Frequent public uproar over forms of data science that rely on information about people demonstrates the challenges of defining and demonstrating trustworthy digital data research practices. This paper reviews problems of trustworthiness in what we term pervasive data research: scholarship that relies on the rich information generated about people through digital interaction. We highlight the entwined problems of participant unawareness of such research and the relationship of pervasive data research to corporate datafication and surveillance. We suggest a way forward by drawing from the history of a different methodological approach in which researchers have struggled with trustworthy practice: ethnography. To grapple with the colonial legacy of their methods, ethnographers have developed analytic lenses and researcher practices that foreground relations of awareness and power. These lenses are inspiring but also challenging for pervasive data research, given the flattening of contexts inherent in digital data collection. We propose ways that pervasive data researchers can incorporate reflection on awareness and power within their research to support the development of trustworthy data science.


Sign in / Sign up

Export Citation Format

Share Document