Stable channel flow with spanwise heterogeneous surface temperature

2022 ◽  
Vol 933 ◽  
Author(s):  
T. Bon ◽  
J. Meyers

Recent studies have demonstrated that large secondary motions are excited by surface roughness with dominant spanwise length scales of the order of the flow's outer length scale. Inspired by this, we explore the effect of spanwise heterogeneous surface temperature in weakly to strongly stratified closed channel flow (at $Ri_\tau =120$ , 960; $Re_\tau = 180$ , 550) with direct numerical simulations. The configuration consists of equally sized strips of high and low temperature at the lower and upper boundaries, while an overall stable stratification is induced by imposing an average temperature difference between the top and bottom. We consider the influence of the width of the strips ( ${\rm \pi} /8 \leq \lambda /h \leq 4{\rm \pi} $ ), Reynolds number, stability and upper boundary condition on the mean flow structure, skin friction and heat transfer. Results indicate that secondary flows are excited, with alternating high- and low-momentum pathways and vortices, similar to the patterns induced by spanwise heterogeneous surface roughness. We find that the impact of the surface heterogeneity on the outer layer depends strongly on the spanwise heterogeneity length scale of the surface temperature. Comparison to stable channel flow with uniform temperature reveals that the heterogeneous surface temperature increases the global friction coefficient and reduces the global Nusselt number in most cases. However, for the high-Reynolds cases with $\lambda /h \geq {\rm \pi} /2$ , we find a reduction of the friction coefficient. At stronger stability, the vertical extent of the vortices is reduced and the impact of the heterogeneous temperature on momentum and heat transfer is smaller.

2021 ◽  
Vol 2039 (1) ◽  
pp. 012001
Author(s):  
P D Alekseev ◽  
Yu L Leukhin

Abstract A study of the aerodynamics and heat transfer of a jet modular recuperator with a change in its geometric characteristics has been carried out. The influence of the in-line and staggered arrangement of the blowing holes, as well as the diameter of the perforated pipe is considered. In all considered variants, the number of holes, their diameter and gas flow rate through the recuperator remained unchanged. Numerical modeling of the problem was carried out in a three-dimensional setting using the ANSYS Fluent 15.0 software package. It was found that with the in-line arrangement of the blowing holes, secondary flows are formed between their longitudinal rows in the form of swirling jets of opposite rotation directed towards the outlet section of the recuperative device, through which the main part of the heated air flows out. With the staggered arrangement of the blowing holes, the formation of spiral vortices is disturbed, the air flow is carried out along the entire cross section of the annular channel, increasing the drift effect of the flow on the impact jets, which leads to a decrease in the intensity of heat transfer and its uniformity along the length of the working surface. An increase in the diameter of the inner perforated pipe leads to a decrease in the drift effect of the cocurrent flow on the jets, an increase in the distribution uniformity of the heat flux along the length of the heat transfer surface, and an increase in the heat transfer coefficient.


2021 ◽  
Vol 10 (2) ◽  
pp. 259-269
Author(s):  
M. Veera Krishna ◽  
N. Ameer Ahamad ◽  
Ali J. Chamkha

In the current investigative paper, the impact of Hall current on an unsteady magnetohydrodynamic liberated convection revolving flow of a nanofluid restricted with a uniform absorbent medium over an oscillatory moving vertical smooth plate with convective as well as diffusive frontier conditions has been reviewed. The non-dimensionalized governing differential equations by the appropriate frontier conditions are resolved by the perturbations technique. The impacts of the physical constants on the flow as well as the heat transfer features are displayed graphically and analyzed for Cu as well as Al2O3 nanoparticles. For the engineering industry, the skin friction coefficient, local Nusselt number, along with the Sherwood’s number are examined numerically in detail.


Author(s):  
Aroon K. Viswanathan ◽  
Danesh K. Tafti

The capabilities of the Detached Eddy Simulation (DES) and the Unsteady Reynolds Averaged Navier-Stokes (URANS) versions of the 1988 κ-ω model in predicting the turbulent flow field and the heat transfer in a two-pass internal cooling duct with normal ribs is presented. The flow is dominated by the separation and reattachment of shear layers; unsteady vorticity induced secondary flows and strong streamline curvature. The techniques are evaluated in predicting the developing flow at the entrance to the duct and downstream of the 180° bend, fully-developed regime in the first pass, and in the 180° bend. Results of mean flow quantities, secondary flows, friction and heat transfer are compared to experiments and Large-Eddy Simulations (LES). DES predicts a slower flow development than LES, while URANS predicts it much earlier than LES computations and experiments. However it is observed that as fully developed conditions are established, the capability of the base model in predicting the flow and heat transfer is enhanced by switching to the DES formulation. DES accurately predicts the flow and heat transfer both in the fully-developed region as well as the 180° bend of the duct. URANS fails to predict the secondary flows in the fully-developed region of the duct and is clearly inferior to DES in the 180° bend.


Author(s):  
Angela Wu ◽  
Seunghwan Keum ◽  
Volker Sick

In this study, the effects of the thermal boundary conditions at the engine walls on the predictions of Large-Eddy Simulations (LES) of a motored Internal Combustion Engine (ICE) were examined. Two thermal boundary condition cases were simulated. One case used a fixed, uniform wall temperature, which is typically used in conventional LES modeling of ICEs. The second case utilized a Conjugate Heat Transfer (CHT) modeling approach to obtain temporally and spatially varying wall temperature. The CHT approach solves the coupled heat transfer problem between fluid and solid domains. The CHT case included the solid valves, piston, cylinder head, cylinder liner, valve seats, and spark plug geometries. The simulations were validated with measured bulk flow, near-wall flow, surface temperature, and surface heat flux. The LES quality of both simulations was also discussed. The CHT results show substantial spatial, temporal, and cyclic variability of the wall heat transfer. The surface temperature dynamics obtained from the CHT model compared well with measurements during the compression stroke, but the absolute magnitude was 5 K (or 1.4%) off and the prediction of the drop in temperature after top dead center suffered from temporal resolution limitations. Differences in the predicted flow and temperature fields between the uniform surface temperature and CHT simulations show the impact of the surface temperature on bulk behavior.


Author(s):  
Adel Ebadi ◽  
Zohreh Mansoori ◽  
Majid Saffar-Avval ◽  
Goodarz Ahmadi

The effects of wall surface roughness on the rate of heat transfer and temperature profiles in turbulent gas-solid flows in pipes at different inclination angles were studied. The earlier developed computational model for 3D flows including the four-way interactions was extended and used in this study for evaluating the mean flow, turbulence intensity and thermal fields. Interaction of particles with the rough wall was included by introducing the available stochastic wall roughness models (shadow effect model) for the dispersed phase in the computational program. It was found that changes in the particle dispersion and particle concentration altered the Nusselt number and heat transfer rate in different regions of the pipe. The Nusselt number decreased in the lower part of the duct for horizontal and inclined pipes due to the reduction in the settling velocity. The surface roughness also altered the heat transfer coefficient in the periphery of the vertical riser. The simulation results showed that the fluid temperature was reduced in the pipe core and increased near the wall region for inclined pipes. On the other hand, particle temperature increased and flattened in the entire pipe cross section.


Author(s):  
Robert A. Clark ◽  
Nicholas Plewacki ◽  
Pritheesh Gnanaselvam ◽  
Jeffrey P. Bons ◽  
Vaishak Viswanathan

Abstract The interaction of thermal barrier coating’s surface temperature with CMAS (calcium magnesium aluminosilicate) like deposits in gas turbine hot flowpath hardware is investigated. Small Hastelloy X coupons were coated in TBC using the air plasma spray (APS) method and then subjected to a thermal gradient via back-side impingement cooling and front-side impingement heating using the High Temperature Deposition Facility (HTDF) at The Ohio State University (OSU). A 1-D heat transfer model was used to estimate TBC surface temperatures and correlate them to intensity values taken from infrared (IR) images of the TBC surface. TBC frontside surface temperatures were varied by changing back-side mass flow (kept at a constant temperature), while maintaining a constant hot-side gas temperature and jet velocity representative of modern commercial turbofan high-pressure turbine (HPT) inlet conditions (approximately 1600K and 200 m/s, or Mach 0.25). In this study, Arizona Road Dust (ARD) was utilized to mimic the behavior of CMAS attack on TBCs. To identify the minimum temperature at which particles adhere, the back-side cooling mass flow was set to the maximum amount allowed by the test setup, and trace amounts of 0–10 μm ARD particles were injected into the hot-side flow to impinge on the TBC surface. The TBC surface temperature was increased through coolant reduction until noticeable deposits formed, as evaluated through an IR camera. Accelerated deposition tests were then performed where approximately 1 gram of ARD was injected into the hot side flow while the TBC surface temperature was held at various points above the minimum observed deposition temperature. Surface deposition on the TBC coupons was evaluated using an infrared camera and a backside thermocouple. Coupon cross sections were also evaluated under a scanning electron microscope for any potential CMAS ingress into the TBC. Experimental results of the impact of surface temperature on CMAS deposition and deposit evolution and morphology are presented. In addition, an Eulerian-Lagrangian solver was used to model the hot-side impinging jet with particles at four TBC surface temperatures and deposition was predicted using the OSU Deposition model. Comparisons to experimental results highlight the need for more sophisticated modeling of deposit development through conjugate heat transfer and mesh morphing of the target surface. These results can be used to improve physics-based deposition models by providing valuable data relative to CMAS deposition characteristics on TBC surfaces, which modern commercial turbofan high pressure turbines use almost exclusively.


Author(s):  
Lorenzo Mazzei ◽  
Riccardo Da Soghe ◽  
Cosimo Bianchini

Abstract It is well-known from the literature that surface roughness affects significantly friction and heat transfer. This is even more evident for additive manufactured (AM) components, which are taking an increasingly important role in the gas turbine field. However, the exploitation of numerical approaches to improve their design is hindered by the lack of dedicated correlations and CFD model developed for such high roughness conditions. Usually the additive manufactured components are simulated considering the surfaces as smooth or applying an equivalent sand-grain roughness (ks) that results in a velocity shift in the boundary layer. However, determining a priori the most appropriate value of ks is challenging, as dozens of correlations are available, returning scattered and uncertain results. The aim of this work is to benchmark some existing modelling strategies (among which the equivalent sand grain roughness) and test a numerical approach capable of narrowing the existing gap between simulated and tested thermal performance of additive manufactured devices. The technology enabler is represented by higher-fidelity CFD simulations accounting for the impact of real surface roughness on pressure drop and heat transfer. At this purpose, an existing literature model for rough walls has been implemented in ANSYS Fluent and tested on a variety of AM mini-channels so as to determine the best-fitting values of ks and corrected wetted surface ratio Scorr that match the experimental data in terms of friction factor and Nusselt number. Knowing also the measured roughness descriptors of each component, it has been possible to derive valuable guidelines for an effective exploitation of CFD on additive manufactured components, thus allowing a more accurate estimation of the thermal performance in additive manufactured components.


2013 ◽  
Vol 15 (3) ◽  
pp. 926-938 ◽  
Author(s):  
M. S. Filonovich ◽  
R. Azevedo ◽  
L. R. Rojas-Solórzano ◽  
J. B. Leal

In this paper, verification and validation of a turbulence closure model is performed for an experimental compound channel flow, where the velocity and turbulent fields were measured by a Laser Doppler Velocimeter (LDV). Detailed Explicit Algebraic Reynolds Stress Model (EARSM) simulations are reported. There are numerous methods and techniques available to evaluate the numerical uncertainty associated with grid resolution. The authors have adopted the Grid Convergence Index (GCI) approach. The velocity components, the turbulence kinetic energy (TKE), the dissipation rate and the Reynolds stresses were used as variables of interest. The GCI results present low values for the u velocity component, but higher values in what concerns the v velocity component and w velocity component (representing secondary flows) and for Reynolds stresses RSxy and RSyz. This indicates that the mean flow has converged but the turbulent field and secondary flows still depend on grid resolution. Based on GCI values distribution, the medium and fine meshes were further refined. In addition to GCI analysis, the authors have performed linear regression analysis for estimating the mesh quality in what concerns small value variables. Comparison of numerical and experimental results shows good agreement.


2018 ◽  
Vol 122 (1257) ◽  
pp. 1697-1710
Author(s):  
Z. Wang ◽  
R. Corral

ABSTRACTThis paper investigates the impact of the wall-heating conditions on the heat transfer performance of a rotating channel with one side smooth and one side roughened by 45° inclined ribs. Previous experimental and numerical studies for single-ribbed wall-heated channels showed that rotation has a significant negative impact on heat transfer performance. In order to investigate this uncommon behaviour, RANS simulations were conducted under three different wall-heating conditions in the present study: ribbed wall heated, all walls heated and adiabatic conditions. Numerical results show that the presence of uneven wall-heating conditions has a negligible impact on the stationary case, but it has a large influence on rotational cases, in both, the heat transfer and the flow field. The underlying reason is that in rotating cases, uneven heating results in different buoyancy effects on the trailing and leading walls of the channel that alter the main flow velocity profile. As a consequence, also secondary flows and heat transfer performance are affected.


Sign in / Sign up

Export Citation Format

Share Document