Inertial and non-inertial focusing of a deformable capsule in a curved microchannel

2021 ◽  
Vol 929 ◽  
Author(s):  
Saman Ebrahimi ◽  
Prosenjit Bagchi

A computational study is presented on cross-stream migration and focusing of deformable capsules in curved microchannels of square and rectangular sections under inertial and non-inertial regimes. The numerical methodology is based on immersed boundary methods for fluid–structure coupling, a finite-volume-based flow solver and finite-element method for capsule deformation. Different focusing behaviours in the two regimes are predicted that arise due to the interplay of inertia, deformation, altered shear gradient, streamline curvature effect and secondary flow. In the non-inertial regime, a single-point focusing occurs on the central plane, and at a radial location between the interior face (i.e. face with highest curvature) of the channel and the location of zero shear. The focusing position is nearly independent of capsule deformability (represented by the capillary number, $Ca$ ). A two-step migration is observed that is comprised of a faster radial migration, followed by a slower migration toward the centre plane. The focusing location progressively moves further toward the interior face with increasing curvature and width, but decreasing height. In the inertial regime, single-point focusing is observed near the interior face for channel Reynolds number $Re_{C}\sim {O}(1)$ , that is also highly sensitive to $Re_{C}$ and $Ca$ , and moves progressively toward the exterior face with increasing $Re_{C}$ but decreasing $Ca$ . As $Re_{C}$ increases by an order, secondary flow becomes stronger, and two focusing locations appear close to the centres of the Dean vortices. This location becomes practically independent of $Ca$ at even higher inertia. The inertial focusing positions move progressively toward the exterior face with increasing channel width and decreasing height. For wider channels, the equilibrium location is further toward the exterior face than the vortex centre.

Author(s):  
Patrick Giolando ◽  
Hui Ma ◽  
Tamara Kinzer-Ursem ◽  
Steve Wereley

Inertial focusing microfluidics have gained significant momentum in the last decade for their ability to separate and filter mixtures of particles and cells based on size [1-3]. However, the most important feature is that the separation is passive, without the need for external forces. At the heart of inertial focusing is the balance between counteracting lift forces: shear and wallinduced lift. Shear-induced lift is a product of the curvature of the fluid flow and the rotation of the particle in the flow, while wall-induced lift is generated by the disturbance of the fluid by the particle near a wall. This phenomenon was first observed by Segre and Silberberg for the focusing of particles in a pipe, and was later extended to the focusing of cells and particle in rectangular channels [4]. Taking advantage of inertial focusing we explore particle capture utilizing an expanded channel microfluidics chip design. By expanding a small region of the straight channel microvortices form in the well, which allows for size selective trapping of particles.


TAPPI Journal ◽  
2011 ◽  
Vol 11 (11) ◽  
pp. 23-30 ◽  
Author(s):  
ANDREAS MARK ◽  
ERIK SVENNING ◽  
ROBERT RUNDQVIST ◽  
FREDRIK EDELVIK ◽  
ERIK GLATT ◽  
...  

Paper forming is the first step in the paper machine where a fiber suspension leaves the headbox and flows through a forming fabric. Complex physical phenomena occur as the paper forms, during which fibers, fillers, fines, and chemicals added to the suspension interact. Understanding this process is important for the development of improved paper products because the configuration of the fibers during this step greatly influences the final paper quality. Because the effective paper properties depend on the microstructure of the fiber web, a continuum model is inadequate to explain the process and the properties of each fiber need to be accounted for in simulations. This study describes a new framework for microstructure simulation of early paper forming. The simulation framework includes a Navier-Stokes solver and immersed boundary methods to resolve the flow around the fibers. The fibers were modeled with a finite element discretization of the Euler-Bernoulli beam equation in a co-rotational formulation. The contact model is based on a penalty method and includes friction and elastic and inelastic collisions. We validated the fiber model and the contact model against demanding test cases from the literature, with excellent results. The fluid-structure interaction in the model was examined by simulating an elastic beam oscillating in a cross flow. We also simulated early paper formation to demonstrate the potential of the proposed framework.


2011 ◽  
Vol 69 (4) ◽  
pp. 842-858 ◽  
Author(s):  
Yibao Li ◽  
Eunok Jung ◽  
Wanho Lee ◽  
Hyun Geun Lee ◽  
Junseok Kim

2014 ◽  
Vol 270 ◽  
pp. 640-659 ◽  
Author(s):  
Mohammad Robiul Hossan ◽  
Robert Dillon ◽  
Prashanta Dutta

2017 ◽  
Vol 34 (3) ◽  
pp. 709-724 ◽  
Author(s):  
Amirmahdi Ghasemi ◽  
R. Nikbakhti ◽  
Amirreza Ghasemi ◽  
Faraz Hedayati ◽  
Amir Malvandi

Purpose A numerical method is developed to capture the interaction of solid object with two-phase flow with high density ratios. The current computational tool would be the first step of accurate modeling of wave energy converters in which the immense energy of the ocean can be extracted at low cost. Design/methodology/approach The full two-dimensional Navier–Stokes equations are discretized on a regular structured grid, and the two-step projection method along with multi-processing (OpenMP) is used to efficiently solve the flow equations. The level set and the immersed boundary methods are used to capture the free surface of a fluid and a solid object, respectively. The full two-dimensional Navier–Stokes equations are solved on a regular structured grid to resolve the flow field. Level set and immersed boundary methods are used to capture the free surface of liquid and solid object, respectively. A proper contact angle between the solid object and the fluid is used to enhance the accuracy of the advection of the mass and momentum of the fluids in three-phase cells. Findings The computational tool is verified based on numerical and experimental data with two scenarios: a cylinder falling into a rectangular domain due to gravity and a dam breaking in the presence of a fixed obstacle. In the former validation simulation, the accuracy of the immersed boundary method is verified. However, the accuracy of the level set method while the computational tool can model the high-density ratio is confirmed in the dam-breaking simulation. The results obtained from the current method are in good agreement with experimental data and other numerical studies. Practical/implications The computational tool is capable of being parallelized to reduce the computational cost; therefore, an OpenMP is used to solve the flow equations. Its application is seen in the following: wind energy conversion, interaction of solid object such as wind turbine with water waves, etc. Originality/value A high efficient CFD approach method is introduced to capture the interaction of solid object with a two-phase flow where they have high-density ratio. The current method has the ability to efficiently be parallelized.


Sign in / Sign up

Export Citation Format

Share Document