Wall shear stress from jetting cavitation bubbles: influence of the stand-off distance and liquid viscosity

2021 ◽  
Vol 932 ◽  
Author(s):  
Qingyun Zeng ◽  
Hongjie An ◽  
Claus-Dieter Ohl

We study systematically the cavitation-induced wall shear stress on rigid boundaries as a function of liquid viscosity $\mu$ and stand-off distance $\gamma$ using axisymmetric volume of fluid (VoF) simulations. Here, $\gamma =d/R_{max}$ is defined with the initial distance of bubble centre from the wall $d$ and the bubble equivalent radius at its maximum expansion $R_{max}$ . The simulations predict accurately the overall bubble dynamics and the time-dependent liquid film thickness between the bubble and the wall prior to the collapse. The spatial and temporal wall shear stress is discussed in detail as a function of $\gamma$ and the inverse Reynolds number $1/Re$ . The amplitude of the wall shear stress is investigated over a large parameter space of viscosity and stand-off distance. The inward stress is caused by the shrinking bubble and its maximum value $\tau _{mn}$ follows $\tau _{mn} Re^{0.35}=-70\gamma +110$ (kPa) for $0.5<\gamma <1.4$ . The expanding bubble and jet spreading on the boundary produce an outward-directed stress. The maximum outward stress is generated shortly after impact of the jet during the early spreading. We find two scaling laws for the maximum outward stress $\tau _{mp}$ with $\tau _{mp} \sim \mu ^{0.2} h_{jet}^{-0.3} U_{jet}^{1.5}$ for $0.5\leq \gamma \leq 1.1$ and $\tau _{mp} \sim \mu ^{-0.25} h_{jet}^{-1.5} U_{jet}^{1.5}$ for $\gamma \geq 1.1$ , where $U_{jet}$ is the jet impact velocity and $h_{jet}$ is the distance between lower bubble interface and wall prior to impact.

2018 ◽  
Vol 846 ◽  
pp. 341-355 ◽  
Author(s):  
Qingyun Zeng ◽  
Silvestre Roberto Gonzalez-Avila ◽  
Rory Dijkink ◽  
Phoevos Koukouvinis ◽  
Manolis Gavaises ◽  
...  

The collapse of a cavitation bubble near a rigid boundary induces a high-speed transient jet accelerating liquid onto the boundary. The shear flow produced by this event has many applications, examples of which are surface cleaning, cell membrane poration and enhanced cooling. Yet the magnitude and spatio-temporal distribution of the wall shear stress are not well understood, neither experimentally nor by simulations. Here we solve the flow in the boundary layer using an axisymmetric compressible volume-of-fluid solver from the OpenFOAM framework and discuss the resulting wall shear stress generated for a non-dimensional distance, $\unicode[STIX]{x1D6FE}=1.0$ ($\unicode[STIX]{x1D6FE}=h/R_{max}$, where $h$ is the distance of the initial bubble centre to the boundary, and $R_{max}$ is the maximum spherical equivalent radius of the bubble). The calculation of the wall shear stress is found to be reliable once the flow region with constant shear rate in the boundary layer is determined. Very high wall shear stresses of 100 kPa are found during the early spreading of the jet, followed by complex flows composed of annular stagnation rings and secondary vortices. Although the simulated bubble dynamics agrees very well with experiments, we obtain only qualitative agreement with experiments due to inherent experimental challenges.


2006 ◽  
Vol 291 (4) ◽  
pp. H1700-H1708 ◽  
Author(s):  
Joan M. Greve ◽  
Andrea S. Les ◽  
Beverly T. Tang ◽  
Mary T. Draney Blomme ◽  
Nathan M. Wilson ◽  
...  

Allometric scaling laws relate structure or function between species of vastly different sizes. They have rarely been derived for hemodynamic parameters known to affect the cardiovascular system, e.g., wall shear stress (WSS). This work describes noninvasive methods to quantify and determine a scaling law for WSS. Geometry and blood flow velocities in the infrarenal aorta of mice and rats under isoflurane anesthesia were quantified using two-dimensional magnetic resonance angiography and phase-contrast magnetic resonance imaging at 4.7 tesla. Three-dimensional models constructed from anatomic data were discretized and used for computational fluid dynamic simulations using phase-contrast velocity imaging data as inlet boundary conditions. WSS was calculated along the infrarenal aorta and compared between species to formulate an allometric equation for WSS. Mean WSS along the infrarenal aorta was significantly greater in mice and rats compared with humans (87.6, 70.5, and 4.8 dyn/cm2, P < 0.01), and a scaling exponent of −0.38 ( R2 = 0.92) was determined. Manipulation of the murine genome has made small animal models standard surrogates for better understanding the healthy and diseased human cardiovascular system. It has therefore become increasingly important to understand how results scale from mouse to human. This noninvasive methodology provides the opportunity to serially quantify changes in WSS during disease progression and/or therapeutic intervention.


2016 ◽  
Vol 310 (10) ◽  
pp. H1304-H1312 ◽  
Author(s):  
Jelle T. C. Schrauwen ◽  
Janina C. V. Schwarz ◽  
Jolanda J. Wentzel ◽  
Antonius F. W. van der Steen ◽  
Maria Siebes ◽  
...  

The aim of this study was to determine if reliable patient-specific wall shear stress (WSS) can be computed when diameter-based scaling laws are used to impose the boundary conditions for computational fluid dynamics. This study focused on mildly diseased human coronary bifurcations since they are predilection sites for atherosclerosis. Eight patients scheduled for percutaneous coronary intervention were imaged with angiography. The velocity proximal and distal of a bifurcation was acquired with intravascular Doppler measurements. These measurements were used for inflow and outflow boundary conditions for the first set of WSS computations. For the second set of computations, absolute inflow and outflow ratios were derived from geometry-based scaling laws based on angiography data. Normalized WSS maps per segment were obtained by dividing the absolute WSS by the mean WSS value. Absolute and normalized WSS maps from the measured-approach and the scaled-approach were compared. A reasonable agreement was found between the measured and scaled inflows, with a median difference of 0.08 ml/s [−0.01; 0.20]. The measured and the scaled outflow ratios showed a good agreement: 1.5 percentage points [−19.0; 4.5]. Absolute WSS maps were sensitive to the inflow and outflow variations, and relatively large differences between the two approaches were observed. For normalized WSS maps, the results for the two approaches were equivalent. This study showed that normalized WSS can be obtained from angiography data alone by applying diameter-based scaling laws to define the boundary conditions. Caution should be taken when absolute WSS is assessed from computations using scaled boundary conditions.


Author(s):  
Brett Freidkes ◽  
David A. Mills ◽  
Casey Keane ◽  
Lawrence S. Ukeiley ◽  
Mark Sheplak

2020 ◽  
Vol 59 (SK) ◽  
pp. SKKE16 ◽  
Author(s):  
Ryo Nagaoka ◽  
Kazuma Ishikawa ◽  
Michiya Mozumi ◽  
Magnus Cinthio ◽  
Hideyuki Hasegawa

Sign in / Sign up

Export Citation Format

Share Document