scholarly journals On moderate deviations in Poisson approximation

2020 ◽  
Vol 57 (3) ◽  
pp. 1005-1027
Author(s):  
Qingwei Liu ◽  
Aihua Xia

AbstractIn this paper we first use the distribution of the number of records to demonstrate that the right tail probabilities of counts of rare events are generally better approximated by the right tail probabilities of a Poisson distribution than those of the normal distribution. We then show that the moderate deviations in Poisson approximation generally require an adjustment and, with suitable adjustment, we establish better error estimates of the moderate deviations in Poisson approximation than those in [18]. Our estimates contain no unspecified constants and are easy to apply. We illustrate the use of the theorems via six applications: Poisson-binomial distribution, the matching problem, the occupancy problem, the birthday problem, random graphs, and 2-runs. The paper complements the works [16], [8], and [18].

2021 ◽  
Vol 47 (4) ◽  
pp. 1-19
Author(s):  
Noah Peres ◽  
Andrew Ray Lee ◽  
Uri Keich

We present ShiftConvolvePoibin, a fast exact method to compute the tail of a Poisson-binomial distribution (PBD). Our method employs an exponential shift to retain its accuracy when computing a tail probability, and in practice we find that it is immune to the significant relative errors that other methods, exact or approximate, can suffer from when computing very small tail probabilities of the PBD. The accompanying R package is also competitive with the fastest implementations for computing the entire PBD.


2002 ◽  
Vol 34 (03) ◽  
pp. 609-625 ◽  
Author(s):  
N. Papadatos ◽  
V. Papathanasiou

The random variablesX1,X2, …,Xnare said to be totally negatively dependent (TND) if and only if the random variablesXiand ∑j≠iXjare negatively quadrant dependent for alli. Our main result provides, for TND 0-1 indicatorsX1,x2, …,Xnwith P[Xi= 1] =pi= 1 - P[Xi= 0], an upper bound for the total variation distance between ∑ni=1Xiand a Poisson random variable with mean λ ≥ ∑ni=1pi. An application to a generalized birthday problem is considered and, moreover, some related results concerning the existence of monotone couplings are discussed.


2002 ◽  
Vol 29 (12) ◽  
pp. 727-736 ◽  
Author(s):  
M. E. Ghitany ◽  
S. A. Al-Awadhi ◽  
S. L. Kalla

It is shown that the hypergeometric generalized negative binomial distribution has moments of all positive orders, is overdispersed, skewed to the right, and leptokurtic. Also, a three-term recurrence relation for computing probabilities from the considered distribution is given. Application of the distribution to entomological field data is given and its goodness-of-fit is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document