scholarly journals On the integral of geometric Brownian motion

2003 ◽  
Vol 35 (01) ◽  
pp. 159-183 ◽  
Author(s):  
Michael Schröder

This paper studies the law of any real powers of the integral of geometric Brownian motion over finite time intervals. As its main results, an apparently new integral representation is derived and its interrelations with the integral representations for these laws originating by Yor and by Dufresne are established. In fact, our representation is found to furnish what seems to be a natural bridge between these other two representations. Our results are obtained by enhancing the Hartman-Watson Ansatz of Yor, based on Bessel processes and the Laplace transform, by complex analytic techniques. Systematizing this idea in order to overcome the limits of Yor's theory seems to be the main methodological contribution of the paper.

2003 ◽  
Vol 35 (1) ◽  
pp. 159-183 ◽  
Author(s):  
Michael Schröder

This paper studies the law of any real powers of the integral of geometric Brownian motion over finite time intervals. As its main results, an apparently new integral representation is derived and its interrelations with the integral representations for these laws originating by Yor and by Dufresne are established. In fact, our representation is found to furnish what seems to be a natural bridge between these other two representations. Our results are obtained by enhancing the Hartman-Watson Ansatz of Yor, based on Bessel processes and the Laplace transform, by complex analytic techniques. Systematizing this idea in order to overcome the limits of Yor's theory seems to be the main methodological contribution of the paper.


2001 ◽  
Vol 33 (1) ◽  
pp. 223-241 ◽  
Author(s):  
Daniel Dufresne

This paper is about the probability law of the integral of geometric Brownian motion over a finite time interval. A partial differential equation is derived for the Laplace transform of the law of the reciprocal integral, and is shown to yield an expression for the density of the distribution. This expression has some advantages over the ones obtained previously, at least when the normalized drift of the Brownian motion is a non-negative integer. Bougerol's identity and a relationship between Brownian motions with opposite drifts may also be seen to be special cases of these results.


2013 ◽  
Vol 50 (1) ◽  
pp. 295-299 ◽  
Author(s):  
Adam Metzler

In this note we compute the Laplace transform of hitting times, to fixed levels, of integrated geometric Brownian motion. The transform is expressed in terms of the gamma and confluent hypergeometric functions. Using a simple Itô transformation and standard results on hitting times of diffusion processes, the transform is characterized as the solution to a linear second-order ordinary differential equation which, modulo a change of variables, is equivalent to Kummer's equation.


2013 ◽  
Vol 50 (01) ◽  
pp. 295-299 ◽  
Author(s):  
Adam Metzler

In this note we compute the Laplace transform of hitting times, to fixed levels, of integrated geometric Brownian motion. The transform is expressed in terms of the gamma and confluent hypergeometric functions. Using a simple Itô transformation and standard results on hitting times of diffusion processes, the transform is characterized as the solution to a linear second-order ordinary differential equation which, modulo a change of variables, is equivalent to Kummer's equation.


2006 ◽  
Vol 43 (01) ◽  
pp. 208-220 ◽  
Author(s):  
Martijn Pistorius

In this paper, we present an iterative procedure to calculate explicitly the Laplace transform of the distribution of the maximum for a Lévy process with positive jumps of phase type. We derive error estimates showing that this iteration converges geometrically fast. Subsequently, we determine the Laplace transform of the law of the upcrossing ladder process and give an explicit pathwise construction of this process.


2009 ◽  
Vol 46 (2) ◽  
pp. 593-600 ◽  
Author(s):  
Svante Janson ◽  
Niclas Petersson

In this paper we study the integral of the supremum process of standard Brownian motion. We present an explicit formula for the moments of the integral (or area)(T) covered by the process in the time interval [0,T]. The Laplace transform of(T) follows as a consequence. The main proof involves a double Laplace transform of(T) and is based on excursion theory and local time for Brownian motion.


2006 ◽  
Vol 43 (1) ◽  
pp. 208-220 ◽  
Author(s):  
Martijn Pistorius

In this paper, we present an iterative procedure to calculate explicitly the Laplace transform of the distribution of the maximum for a Lévy process with positive jumps of phase type. We derive error estimates showing that this iteration converges geometrically fast. Subsequently, we determine the Laplace transform of the law of the upcrossing ladder process and give an explicit pathwise construction of this process.


2011 ◽  
Vol 48 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Angelos Dassios ◽  
Shanle Wu

In this paper we study the excursion time of a Brownian motion with drift outside a corridor by using a four-state semi-Markov model. In mathematical finance, these results have an important application in the valuation of double-barrier Parisian options. We subsequently obtain an explicit expression for the Laplace transform of its price.


2020 ◽  
pp. 2150031
Author(s):  
Shiyu Song

In this paper, we study the joint Laplace transform of the sticky Brownian motion on an interval, its occupation time at zero and its integrated process. The perturbation approach of Li and Zhou [The joint Laplace transforms for diffusion occupation times, Adv. Appl. Probab. 45 (2013) 1049–1067] is adopted to convert the problem into the computation of three Laplace transforms, which is essentially equivalent to solving the associated differential equations with boundary conditions. We obtain the explicit expression for the joint Laplace transform in terms of the modified Bessel function and Airy functions.


Sign in / Sign up

Export Citation Format

Share Document