scholarly journals A right continuous right weakly si-ring is semisimple

1995 ◽  
Vol 51 (3) ◽  
pp. 479-488 ◽  
Author(s):  
Dinh Van Huynh ◽  
Nguyen Van Sanh

It is shown that a projective CS right module M over a ring R is a direct sum of uniform modules of composition lengths at most 2 if (i) every finitely generated direct summand of M is continuous and (ii) every non-zero M-singular right R-module contains a non-zero M-injective submodule. In particular, a right continuous ring R is semisimple if R is right weakly SI, that is, if every non-zero singular right R-module contains a non-zero injective submodule.

Author(s):  
Rachid Ech-chaouy ◽  
Abdelouahab Idelhadj ◽  
Rachid Tribak

A module [Formula: see text] is called coseparable ([Formula: see text]-coseparable) if for every submodule [Formula: see text] of [Formula: see text] such that [Formula: see text] is finitely generated ([Formula: see text] is simple), there exists a direct summand [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text] is finitely generated. In this paper, we show that free modules are coseparable. We also investigate whether or not the ([Formula: see text]-)coseparability is stable under taking submodules, factor modules, direct summands, direct sums and direct products. We show that a finite direct sum of coseparable modules is not, in general, coseparable. But the class of [Formula: see text]-coseparable modules is closed under finite direct sums. Moreover, it is shown that the class of coseparable modules over noetherian rings is closed under finite direct sums. A characterization of coseparable modules over noetherian rings is provided. It is also shown that every lifting (H-supplemented) module is coseparable ([Formula: see text]-coseparable).


Algebra ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Alveera Mehdi ◽  
Fahad Sikander ◽  
Firdhousi Begum

A module M over an associative ring R with unity is a QTAG module if every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules. There are many fascinating properties of QTAG modules of which h-pure submodules and high submodules are significant. A submodule N is quasi-h-dense in M if M/K is h-divisible, for every h-pure submodule K of M, containing N. Here we study these submodules and obtain some interesting results. Motivated by h-neat envelope, we also define h-pure envelope of a submodule N as the h-pure submodule K⊇N if K has no direct summand containing N. We find that h-pure envelopes of N have isomorphic basic submodules, and if M is the direct sum of uniserial modules, then all h-pure envelopes of N are isomorphic.


Author(s):  
Rachid Ech-chaouy ◽  
Abdelouahab Idelhadj ◽  
Rachid Tribak

A module [Formula: see text] is called [Formula: see text]-separable if every proper finitely generated submodule of [Formula: see text] is contained in a proper finitely generated direct summand of [Formula: see text]. Indecomposable [Formula: see text]-separable modules are shown to be exactly the simple modules. While direct summands of an [Formula: see text]-separable module do not inherit the property, in general, the question of the stability under direct sums is unanswered. But we obtain some partial answers. It is shown that any infinite direct sum of [Formula: see text]-separable modules is [Formula: see text]-separable. Also, we prove that if [Formula: see text] and [Formula: see text] are [Formula: see text]-separable modules such that [Formula: see text] is [Formula: see text]-projective, then [Formula: see text] is [Formula: see text]-separable. We conclude the paper by providing some characterizations of several classes of rings in terms of [Formula: see text]-separable modules. Among others, we prove that the class of rings [Formula: see text] for which every (injective) [Formula: see text]-module is [Formula: see text]-separable is exactly that of semisimple rings.


2019 ◽  
Vol 19 (11) ◽  
pp. 2050207
Author(s):  
Gangyong Lee ◽  
Mauricio Medina-Bárcenas

Hereditary rings have been extensively investigated in the literature after Kaplansky introduced them in the earliest 50’s. In this paper, we study the notion of a [Formula: see text]-Rickart module by utilizing the endomorphism ring of a module and using the recent notion of a Rickart module, as a module theoretic analogue of a right hereditary ring. A module [Formula: see text] is called [Formula: see text]-Rickart if every direct sum of copies of [Formula: see text] is Rickart. It is shown that any direct summand and any direct sum of copies of a [Formula: see text]-Rickart module are [Formula: see text]-Rickart modules. We also provide generalizations in a module theoretic setting of the most common results of hereditary rings: a ring [Formula: see text] is right hereditary if and only if every submodule of any projective right [Formula: see text]-module is projective if and only if every factor module of any injective right [Formula: see text]-module is injective. Also, we have a characterization of a finitely generated [Formula: see text]-Rickart module in terms of its endomorphism ring. Examples which delineate the concepts and results are provided.


2003 ◽  
Vol 2003 (69) ◽  
pp. 4373-4387 ◽  
Author(s):  
A. Idelhadj ◽  
R. Tribak

A moduleMis⊕-supplemented if every submodule ofMhas a supplement which is a direct summand ofM. In this paper, we show that a quotient of a⊕-supplemented module is not in general⊕-supplemented. We prove that over a commutative ringR, every finitely generated⊕-supplementedR-moduleMhaving dual Goldie dimension less than or equal to three is a direct sum of local modules. It is also shown that a ringRis semisimple if and only if the class of⊕-supplementedR-modules coincides with the class of injectiveR-modules. The structure of⊕-supplemented modules over a commutative principal ideal ring is completely determined.


2018 ◽  
Vol 168 (2) ◽  
pp. 305-322 ◽  
Author(s):  
SAEED NASSEH ◽  
RYO TAKAHASHI

AbstractLet (R, 𝔪) be a commutative noetherian local ring. In this paper, we prove that if 𝔪 is decomposable, then for any finitely generated R-module M of infinite projective dimension 𝔪 is a direct summand of (a direct sum of) syzygies of M. Applying this result to the case where 𝔪 is quasi-decomposable, we obtain several classifications of subcategories, including a complete classification of the thick subcategories of the singularity category of R.


2019 ◽  
Vol 18 (02) ◽  
pp. 1950035 ◽  
Author(s):  
M. Behboodi ◽  
Z. Fazelpour

We define prime uniserial modules as a generalization of uniserial modules. We say that an [Formula: see text]-module [Formula: see text] is prime uniserial ([Formula: see text]-uniserial) if its prime submodules are linearly ordered by inclusion, and we say that [Formula: see text] is prime serial ([Formula: see text]-serial) if it is a direct sum of [Formula: see text]-uniserial modules. The goal of this paper is to study [Formula: see text]-serial modules over commutative rings. First, we study the structure [Formula: see text]-serial modules over almost perfect domains and then we determine the structure of [Formula: see text]-serial modules over Dedekind domains. Moreover, we discuss the following natural questions: “Which rings have the property that every module is [Formula: see text]-serial?” and “Which rings have the property that every finitely generated module is [Formula: see text]-serial?”.


1989 ◽  
Vol 40 (1) ◽  
pp. 109-111 ◽  
Author(s):  
John Clark

An associative ring R with identity is called a left (right) FPF ring if given any finitely generated faithful left (right) R-module A and any left (right) R-module M then M is the epimorphic image of a direct sum of copies of A. Faith and Page have asked if the subring of elements fixed by a finite group of automorphisms of an FPF ring need also be FPF. Here we present examples showing the answer to be negative in general.


1976 ◽  
Vol 28 (5) ◽  
pp. 1105-1120 ◽  
Author(s):  
W. K. Nicholson

Mares [9] has called a projective module semiperfect if every homomorphic image has a projective cover and has shown that many of the properties of semiperfect rings can be extended to these modules. More recently Zelmanowitz [16] has called a module regular if every finitely generated submodule is a projective direct summand. In the present paper a class of semiregular modules is introduced which contains all regular and all semiperfect modules. Several characterizations of these modules are given and a structure theorem is proved. In addition several theorems about regular and semiperfect modules are extended.


Sign in / Sign up

Export Citation Format

Share Document