LONG-TERM EFFECT OF PULSES AND NUTRIENT MANAGEMENT ON SOIL ORGANIC CARBON DYNAMICS AND SUSTAINABILITY ON AN INCEPTISOL OF INDO-GANGETIC PLAINS OF INDIA

2012 ◽  
Vol 48 (4) ◽  
pp. 473-487 ◽  
Author(s):  
P. K. GHOSH ◽  
M. S. VENKATESH ◽  
K. K. HAZRA ◽  
NARENDRA KUMAR

SUMMARYContinuous cultivation of rice–wheat cropping system in the Indo-Gangetic plains is under threat with decline in soil organic carbon (SOC), total factor productivity and overall sustainability. Pulses, an important component of crop diversification, are known to improve soil quality through their unique ability of biological N2 fixation, leaf litter fall and deep root system. Therefore, the effect of inclusion of pulses in the puddled rice system under organic and inorganic amendments on SOC pool and its management indices were evaluated in a long-term experiment after seven cropping cycles. The results indicated that inclusion of pulses in the rice-based system improved the SOC content, being greater in surface soil (0–20 cm) and declining with soil depth. Among the four carbon fractions determined, less labile carbon fraction (Cfrac3) was the dominant fraction in the puddled rice system, particularly under organic treatments, indicating that it is possible to maintain organic carbon for longer time in this system. The rice–wheat–mung bean system resulted in 6% increase in SOC and 85% increase in soil microbial biomass carbon as compared with the conventional rice–wheat system. Application of crop residues, farm yard manure (5 t ha−1) and biofertilisers had greater amount of carbon fractions and carbon management index (CMI) over control and the recommended inorganic (NPKSZnB) treatment in the soil surface, particularly in the system where pulses are included. Interestingly, in the puddled rice system, passive carbon pool is more in surface soil than deeper layers. The relative proportion of active carbon pool in surface layer (0–20 cm) to subsurface layer (20–40 cm) was highest in rice–wheat–rice–chickpea (1.14:1) followed by rice–wheat–mung bean (1.07:1) and lowest in the rice–wheat system (0.69:1). Replacing wheat with chickpea either completely or during alternate year in the conventional rice–wheat system also had positive impact on SOC restoration and CMI. Therefore, inclusion of pulses in the rice-based cropping system and organic nutrient management practices had significant impact on maintaining SOC in an Inceptisol of the Indo-Gangetic plains of India.

Author(s):  
R. K. Naresh ◽  
Yogesh Kumar ◽  
S. S. Tomar ◽  
Mukesh Kumar ◽  
M. Sharath Chandra ◽  
...  

The Long term experiment (2009-10 to-2018-19) was conducted to study the effects of precision land levelled (PLL) versus traditional land levelled (TLL) systems on aggregate-associated soil organic carbon (SOC) in a farmers participatory fields under sub-tropical ecosystems (Western Uttar Pradesh) of Indian conditions. The significance of this study mainly focus to determine the suitability of various labile carbon fractions as indicators of soil quality and the stability of aggregates plays a vital role in preserving and long term storing of soil organic carbon by implementing Precision Land Levelling under various arable cropping system. The treatment comprised of sixteen alternative arable cropping systems strategies viz. R-WPLL, R-WTLL, S-WPLL, S-WTLL, R-P-MbPLL, R-P-MbTLL, R-P-OPLL, R-P-OTLL, R-C-OPLL, R-C-OTLL, O-W-MbPLL, O-W-MbTLL, M-W-MbPLL, M-W-MbTLL, M-P-MbPLL, and M-P-MbTLL etc were taken with recommended dose of fertilizers and various observations were recorded. The results indicated that the M-P-MbPLL produced 79.5 kgha-1day-1 productivity and used only 110 cm irrigation water which was 48.1 per cent less than irrigation water used for R-WPLL. The land use efficiency under R-P-MbPLL, R-P-OPLL, R-P-MbPLL, R-C-OPLL and M-P-MbPLL were recorded as 86.2, 85.1, 84.8, 84.6 and 83.9%. However, energy value in terms total input energy and energy productivity were 39.9 and 218.5 GJ ha-1 over existing R-W system (32.9 & 105.7 GJ ha-1). The quantity of water used in the R-C-O, M-W-Mb, M-P-Mb, and O-W-Mb were 46.1, 44.9, 40.1 and 36.3 per cent less than quantity of water used for R-W system. Aggregate-associated SOC contents in 0-15 cm depth were recorded highest SOC at 15-30 cm depth in PLL systems as 9.4% for both M-P-MbPLL and M-W-MbPLL. Highest PON change in arable cropping system (30.9 & 40.1%) was found in O-W-Mb with precision land levelling (T11) plots followed by R-P-O with precision land levelling (T7) plots (26.1 & 35.8%) as compared to R-W and S-W system. The values of LFOC in surface soil were 194.7, 187.9, 176.2, 170.9, 168.5, 150.6, 132.8 and 123.8 mgkg−1 in R-P-O, R-C-O, M-W-Mb, O-W-Mb, M-P-Mb, R-P-Mb, R-W and S-W with precision land levelling treatments. Higher SOC sequestration was observed with precision land leveling along with alternative arable cropping systems with O-W-MbPLL, R-C-OPLL, R-P-OPLL, O-W-MbPLL and M-P-MbPLL respectively. Therefore, PLL systems had greater soil surface aggregation and carbon storage, land levelling did not affect SOC patterns across aggregates, but changed the distribution of aggregate size, reflecting that land levelling mainly influenced soil fertility by altering soil structure.


2018 ◽  
Vol 64 (No. 11) ◽  
pp. 557-563 ◽  
Author(s):  
Yunfa Qiao ◽  
Shujie Miao ◽  
Yingxue Li ◽  
Xin Zhong

Monoculture is common to meet commodity grain requirements in Northeast China. The effect of long-term monoculture on chemical composition of soil organic carbon (SOC) remains unclear. This study was done to evaluate how changes in chemical compositions of SOC responded to long-term monoculture. To achieve this objective, the chemical compositions of SOC in maize-soybean rotation, continuous soybean and continuous maize were characterized with the nuclear magnetic resonance technique. Two main components, O-alkyl and aromatic C, showed a wider range of relative proportion in monoculture than rotation system across soil profiles, but no difference was observed between two monoculture systems. Pearson’s analysis showed a significant relationship between plant-C and OCH<sub>3</sub>/NCH, alkyl C or alkyl O-C-O, and the A/O-A was closely related to plant-C. The findings indicated a greater influence of monoculture on the chemical composition of SOC compared to rotation, but lower response to crop species.


2008 ◽  
Vol 100 (6) ◽  
pp. 1787-1787 ◽  
Author(s):  
Ademir Calegari ◽  
W. L. Hargrove ◽  
Danilo Dos Santos Rheinheimer ◽  
Ricardo Ralisch ◽  
Daniel Tessier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document