Competition dynamics of Parthenium hysterophorus in direct-seeded aerobic rice fields

2019 ◽  
Vol 56 (2) ◽  
pp. 196-203 ◽  
Author(s):  
Ali A. Bajwa ◽  
Aman Ullah ◽  
Muhammad Farooq ◽  
Bhagirath S. Chauhan ◽  
Steve Adkins

AbstractParthenium hysterophorus is a prolific invasive weed species, which infests many crops in over 40 countries around the world. A 2-year field study was carried out to quantify the potential impacts of this weed on direct-seeded rice. Parthenium weed was allowed to compete for 2, 4, 6 or 8 weeks after crop emergence, while full season weedy and weed-free plots were maintained as controls. Parthenium weed plants grew taller and attained more biomass as the competition duration prolonged. The yield and yield-related attributes of rice were negatively affected with increasing competition duration. The season-long competition caused the highest reductions in panicle number (28–34%), panicle length (26–27%), grains per panicle (22–23%) and grain yield (33 and 38%) of rice in both years. Weed competition for 2–8 weeks caused 5–34% and 6–33% losses in rice grain yield during both years, respectively. Importantly, Parthenium weed control after 8 weeks of competition did not improve rice yield significantly. The results suggested that Parthenium weed should be controlled in rice fields between 4 and 8 weeks after crop emergence under direct-seeded conditions to avoid over 10% yield losses.


Author(s):  
Adriano S. Nascente ◽  
Luís F. Stone ◽  
Cleber M. Guimarães

An important point in no-tillage system is the time between cover crop glyphosate desiccation and rice sowing. This study aimed to verify the effect of Brachiaria ruziziensis management time before rice sowing on rice yield and its components. The experiment was conducted under greenhouse conditions and consisted of four types of B. ruziziensis management: with Brachiaria and with herbicide (WBWH), without Brachiaria shoots and with herbicide (NBWH), without Brachiaria shoots and without herbicide (NBNH), and with Brachiaria and without herbicide (WBNH), at four times: 30, 20, 10, and 0 days, preceding the rice sowing. The amount of B. ruziziensis dry matter increased as the management was done closer to the rice sowing date. The WBWH and WBNH managements (this one causes the lowest rice grain yield) must be done 30 days before rice sowing; while NBWH management must be done ten or more days before rice sowing. On the other hand, NBNH management (this one favors the best rice grain yield) can be done until rice sowing day. Despite some reduction in rice yield caused by the B. ruziziensis management, when it was done at the proper time the rice grain yield was similar to the control (without Brachiaria sowing and without herbicide application).



2020 ◽  
Vol 66 (No. 3) ◽  
pp. 135-142
Author(s):  
Phuong Dinh Thi Lan ◽  
Nga Nguyen Thi Hang ◽  
Hoa Nguyen Thanh

Zinc (Zn) insufficiency and water deficiency are primary challenges in intensive rice production systems. This study aims to examine the influence of two irrigation regimes, flood irrigation (FI) and water-saving irrigation (WSI), on rice grain yield and mobile Zn accumulation in soil and rice grains. Experiments were conducted in An Vien rice fields in the Tien Lu district, Hung Yen province, located in the middle of the Red River delta during four rice seasons from 2015 to 2016. The results showed that the WSI regime dramatically increased the grain yield and Zn concentrations in grain of rice. Grain yield was increased by 14.76% and grain Zn concentration by 17.93% when compared with the FI regime. The decrease in the mobile Zn concentration in soil was only 5.7% in the WSI technique, compared with 73.6% for FI techniques. Therefore, it can be concluded that WSI can be effective agricultural practice to elevate grain yield and increase Zn retention in soil and bioavailability in rice grains.



Agriculture ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 167 ◽  
Author(s):  
Kifayatullah Kakar ◽  
Tran Dang Xuan ◽  
Saidajan Abdiani ◽  
Imran Khan Wafa ◽  
Zubair Noori ◽  
...  

Rice is an important staple food for Afghans. Its production has been increased, and attention is needed to improve grain quality. Experiments were conducted to evaluate the growth, yield, physicochemical properties, antioxidant activity, and morphological structures of four exotic rice varieties widely grown in Afghanistan (Attai-1, Jalalabad-14, Shishambagh-14, and Zodrass). Antioxidant activities, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), of rice grain were determined. A scanning electron microscopic observation was conducted on the cross-cut section of dehulled rice grains. The results showed a wide variation among four rice varieties for growth, grain yield, physicochemical properties, antioxidant activities, and morphology. Tiller and panicle number per hill, 1000-grain weight, grain yield, and antioxidant activities were found to be highest in Jalalabad-14. Attai-1 showed lower amylose, protein, and lipid contents with a high number of perfect grains, consequently enhanced taste point (score of quality). Grain yield, protein, and amylose contents showed a negative correlation with antioxidant activities. Accumulated structures in Attai-1, Shishambagh-14, and Zodrass were normal; however, Jalalabad-14 increased protein bodies and its traces in the amyloplasts. Information on yield potential, grain quality, and nutritional value of these exotic rice varieties may useful for sustainable food provision and nutritional improvement of rice in Afghanistan.



2021 ◽  
Vol 22 (1) ◽  
pp. 1
Author(s):  
Nurwulan Agustiani ◽  
Sujinah Sujinah ◽  
Indrastuti Apri Rumanti

<p class="abstrakinggris"><span lang="EN-US">Stagnant flooding (SF) stress has contributed decreasing rice production in Indonesia. The study aimed to explore critical variables of rice growth that contribute to the decreasing grain yield under SF conditions and a common irrigation system (control). The experiment was arranged in a complete randomized block design with four replications to test 10 rice genotypes (Inpari 30 Ciherang Sub-1, Inpara 3, Inpara 4, Inpara 8, IRRI119, IRRI154, IR42, IR14D121, IR14D157, and Tapus). The water depth was managed according to the farmer’s practices for control, while for SF plots the standing water depth was gradually increased from 35 days after transplanting and was maintained at 50 cm until harvest. Results showed that plant height, tillering ability, leaf greenness, panicle number per hill and grain filling percentage were critical growth variables that affect grain yield at optimal conditions. The yield of the 10 genotypes decreased by 25–50% under SF conditions. Inpara 3 had the stable yield in those two watering conditions. Therefore, it could be used as a check variety for SF condition. Inpara 9 and IRRI119 experienced decreased yield of more than 50% under SF conditions. The key factors determining the decreased yield were tillering ability and green leaf level. Optimization of the two variables at SF conditions will largely determine rice yield associated with panicle number per hill and grain number per panicle. Results of the study are useful as preliminary recommendations for designing new variety and cultivation techniques to reduce the impact of SF stress on rice yield.</span></p>



2016 ◽  
Vol 14 (2) ◽  
pp. e1003 ◽  
Author(s):  
Dibakar Ghosh ◽  
Udai P. Singh ◽  
Krishnendu Ray ◽  
Anupam Das

In direct seeded rice (DSR) cultivation, weed is the major constraint mainly due to absence of puddling in field. The yield loss due to weed interference is huge, may be up to 100%. In this perspective, the present experiment was conducted to study the efficacy of selected herbicides, and to predict the rice yield using artificial neural network (ANN) models. The dry weight and density of weeds were recorded at different growth stages and consequently herbicidal efficacy was evaluated. Experimental results revealed that pre-emergence (PRE) herbicide effectively controlled the germination of grassy weeds. Application bispyribac-sodium as post-emergence (POST) following PRE herbicides (clomazone or pendimethalin) or as tank-mixture with clomazone effectively reduced the density and biomass accumulation of diverse weed flora in DSR. Herbicidal treatments improved the plant height, yield attributes and grain yield (2.7 to 5.5 times) over weedy check. The sensitivity of the best ANN model clearly depicts that the weed control index (WCI) of herbicides was most important than their weed control efficiency (WCE). Besides, the early control of weeds is a better prescription to improve rice yield. Differences in sensitivity values of WCI and WCE across the crop growth stages also suggest that at 15, 30 and 60 days after sowing, herbicides most effectively controlled sedges, broad leaves and grasses, respectively. Based on the grain yield and herbicidal WCE, it can be concluded that the combined application of pendimethalin or clomazone as PRE followed by bispyribac-sodium as POST or tank-mixture of clomazone + bispyribac sodium can effectively control different weed flushes throughout the crop growth period in DSR.



2021 ◽  
Vol 58 (3) ◽  
pp. 375-383
Author(s):  
BS Satapathy ◽  
B Duary ◽  
Sanjoy Saha ◽  
S Munda ◽  
D Chatterjee

Wet direct seeding is proved as a viable alternate to conventional transplanting method of rice. Maintenance of optimum population by adopting an appropriate sowing method followed by judicious weed control practices ensures profitability of wet direct seeded rice (W-DSR). A field experiment was carried out to find out a suitable sowing technique and weed control options for enhancing productivity and economics of W-DSR. The W-DSR was infested with twelve numbers of weed species comprising of eight families under different sowing methods. The composition of sedges, broadleaved (BLW) and grassy weeds was 83.07, 11.0 and 5.93%, respectively. Irrespective of sowing methods, weeds such as, Echinochloa glabrescens and Leptochloa chinensis among grasses, Cyperus difformis and Scirpus juncoides among sedges and Lindernia anagallis among BLW were dominant. Drum seeding recorded 6.9 and 12.7% higher gross and net return, respectively than broadcasting, but it was at par with spot seeding. Highest B: C ratio of 2.07 was recorded with drum seeding, whereas spot seeding recorded lowest B: C ratio (1.99). Crop-weed competition caused 31.7% reduction in grain yield with W-DSR. Application of early post-emergent herbicide bensulfuron-methyl + pretilachlor @ 60+600 g/ha at 10 DAS, azimsulfuron @ 35 g/ha at 20 DAS, and bispyribac sodium @ 30 g/ha at 20 DAS recorded increase in grain yield 40.3, 40.1 and 39.8%, respectively over the weedy check. Ready mix bensulfuron-methyl + pretilachlor @ 60+600 g/ha at 10 DAS registered highest B: C ratio (2.16) but it did not vary significantly with bispyribac sodium @ 30 g/ha and azimsulfuron @ 35 g/ha.



Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1587
Author(s):  
Amalia Belgeri ◽  
Ali Ahsan Bajwa ◽  
Asad Shabbir ◽  
Sheldon Navie ◽  
Gabrielle Vivian-Smith ◽  
...  

Parthenium weed has been invading native and managed Australian grasslands for almost 40 years. This study quantified the potential of selected plant mixtures to suppress the growth of parthenium weed and followed their response to grazing and their impact upon plant community diversity. The first mixture consisted of predominantly introduced species including Rhodes grass, Bisset bluegrass, butterfly pea and green panic. This mixture produced biomass rapidly and showed tolerance to weed species other than parthenium weed. However, the mixture was unable to suppress the growth of parthenium weed. The second mixture of predominantly native pasture species (including forest bluegrass, Queensland bluegrass, Buffel grass and siratro) produced biomass relatively slowly, but eventually reached the same biomass production as the first mixture 12 weeks after planting. This mixture suppressed parthenium weed re-establishment by 78% compared to the control treatment. Its tolerance to the invasion of other weed species and the maintenance of forage species evenness was also superior. The total diversity was five times higher for the mixture communities as compared to the plant community in the control treatment. Therefore, using the suppressive pasture mixtures may provide an improved sustainable management approach for parthenium weed in grasslands.



2009 ◽  
Vol 45 (No. 3) ◽  
pp. 113-118 ◽  
Author(s):  
Z. Pacanoski ◽  
G. Glatkova

Field trials were conducted in the Agricultural Research Institute for Rice, at two localities during 2005 and 2006. The objective of the study was to establish an appropriate weed management strategy for the effective control of weed flora in direct wet-seeded rice. Herbicide selectivity and influence on grain yield were also evaluated. The weed population in the trials was composed of 8 and 5 weed species in Kočani and Probi&scaron;tip locality, respectively. The most prevailing weeds in both localities were:Cyperus rotundus, Echinochloa crus-galli and Heteranthea limosa. The average weediness for both years was 456.8 weed stems per m<sup>2</sup> in Kočani locality and 589.0 weed stems per m<sup>2</sup> in Probi&scaron;tip locality. In both localities all herbicides controlled Cyperus rotundus, Echinochloa crus-galli and Heteranthera limosa excellently except Mefenacet 53 WP. All applied herbicides showed high selectivity to rice, no visual injuries were determined at any rates in any year and locality. Herbicidal treatments in both localities significantly increased rice grain yield in comparison with untreated control.



2015 ◽  
Vol 2 (3) ◽  
pp. 385-394
Author(s):  
Niloy Paul ◽  
Mohammad Kamrul Hasan ◽  
Md Nasir Uddin Khan

A field experiment was conducted to find out the effect of different doses of ipil-ipil (Leucaena leucocephala ) (Lam.) de Wit. tree green leaf biomass on rice yield and soil chemical properties. Four different treatments such as T0: Recommended fertilizer dose (Urea 195 kg/ha, TSP 50 kg/ha, MOP 142 kg/ha, Gypsum 75 kg/ha and Zinc Sulphate 4 kg/ha), T1: 5 t/ha, T2: 7.5 t/ha, and T3: 10 t/ha ipil-ipil tree green leaf was used in this study in a Randomized complete block design with three replications. The results showed that the treatment T3 was performed better than recommended fertilizer dose in case all yield contributing characters of rice except grain yield. The highest (5.29 t/ha) rice grain yield was obtained in recommended fertilizer dose followed by 10 t/ha, 7.5 t/ha and 5 t/ha ipil-ipil tree green leaf biomass amendment having 4.80, 3.16 and 2.36 t/ha respectively. The highest grain yield that was obtained from recommended fertilizer dose was 10.21% higher compared to the highest dose (10 t/ha) of ipil-ipil tree green leaf biomass. It was mentioned that among the different doses of ipil-ipil tree green leaf biomass 10 t/ha performed the best over others. The ipil-ipil tree green leaf biomass was also significantly influenced on some essential nutrient status which is very important for rice production. The highest amount of total N, available P, exchangeable K and available S were found in the treatment T3 and the lowest in the treatment T1. Therefore, it can be concluded that the ipil-ipil tree leaf has beneficial effects and could be combined with inorganic fertilizer for sustainable crop yield and maintaining soil fertility.Res. Agric., Livest. Fish.2(3): 385-394, December 2015



Sign in / Sign up

Export Citation Format

Share Document