Arc-related peridotite blocks exhumed to the Eastern Block of the North China Craton prior to 2.47 Ga

2021 ◽  
pp. 1-24
Author(s):  
Mingyue Gong ◽  
Wei Tian ◽  
Zhuang Li ◽  
Bin Fu ◽  
Chunjing Wei

Abstract The Songling and Majiayu peridotite blocks occur in the Eastern Block, North China Craton (NCC). Geothermobarometry data show that the Songling peridotites began exhumation from a depth of c. 70 km (c. 23 kbar). During exhumation, the Songling peridotites were intruded by an upper-crust-derived, high-δ18O (up to +7.28‰ in zircon) trondhjemitic dyke at 2.47 Ga and experienced granulite-facies metamorphism. The Songling peridotites have hybrid mantle wedge (HMW) -like high SiO2 (> 45 wt%), high FeOt (c. 10 wt%) content, high modal orthopyroxene abundance (> 35%) and high ϵNd(t) (+18.4 to +21.4), which were generated by the reaction between peridotite and eclogite-derived melts. The clinopyroxenes from the Songling peridotites were in equilibrium with a Nb-, Zr- and Ti-depleted arc-like magma. The Majiayu peridotites are characterized by depletion of Nb, Zr and Hf and are highly enriched in FeOt, Th and light rare earth elements (LREEs), which can be interpreted as an open system reaction between hydrous melts and fore-arc mantle peridotites. These two peridotite blocks are considered to be arc-related mantle peridotites that experienced melt extraction and metasomatism in different styles. They were exhumed to the north margin of the North China Craton during the c. 2.47 Ga arc–continent collision along the Zunhua structural belt.

2013 ◽  
Vol 150 (4) ◽  
pp. 756-764 ◽  
Author(s):  
LING-LING XIAO ◽  
GUO-DONG WANG ◽  
HAO WANG ◽  
ZONG-SHENG JIANG ◽  
CHUN-RONG DIWU ◽  
...  

AbstractAmphibolites and metapelites exposed in the Zanhuang metamorphic complex situated in the south-middle section of the Trans-North China Orogen (TNCO) underwent upper-amphibolite-facies metamorphism and record clockwise P–T paths including retrograde isothermal decompression. High-resolution zircon U–Pb geochronological analyses indicate that the metamorphic peak occurred during ~ 1840–1860 Ma, which is in accordance with the ubiquitous metamorphic ages of ~ 1850 Ma retrieved by miscellaneous geochronologic methods throughout the metamorphic terranes of the northern TNCO, confirming that the south-middle section of the TNCO was involved in the amalgamation of the Eastern and Western Blocks of the North China Craton during the Palaeoproterozoic.


2019 ◽  
Vol 131 (9-10) ◽  
pp. 1591-1606 ◽  
Author(s):  
Hailin Wu ◽  
Wenbin Zhu ◽  
Rongfeng Ge

Abstract Granulite occupies the root of orogenic belts, and understanding its formation and evolution may provide critical information on orogenic processes. Previous studies have mainly focused on garnet-bearing high-pressure and medium-pressure granulites, whereas the metamorphic evolution and pressure-temperature (P-T) paths of garnet-absent, low-pressure granulites are more difficult to constrain. Here, we present zircon U-Pb ages and mineral chemistry for a suite of newly discovered two-pyroxene granulites in the North Altyn Tagh area, southeastern Tarim craton, northwestern China. Conventional geothermobarometry and phase equilibrium modeling revealed that these rocks experienced a peak granulite-facies metamorphism at T = 790–890 °C and P = 8–11 kbar. The mineral compositions and retrograde symplectites record a clockwise cooling and exhumation path, possibly involving near-isothermal decompression followed by near-isobaric cooling. Zircon U-Pb dating yielded a ca. 1.97 Ga metamorphic age, which likely represents the initial cooling age, based on Ti-in-zircon thermometry. Combined with regional geological records, we interpret that these granulites originated from the basement rocks of a late Paleoproterozoic magmatic arc that was subsequently involved in a collisional orogen in the southern Tarim craton, presumably related to the assembly of the Columbia/Nuna supercontinent. The clockwise P-T paths of the granulites record crustal thickening and burial followed by crustal thinning and exhumation in the upper plate of the collisional orogen. Our data indicate that the initial exhumation of this orogen probably occurred no later than ca. 1.97 Ga, which is supported by widespread 1.93–1.85 Ga postorogenic magmatism in this area.


Sign in / Sign up

Export Citation Format

Share Document