scholarly journals Some results on stable p-harmonic maps

1994 ◽  
Vol 36 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Leung-Fu Cheung ◽  
Pui-Fai Leung

For each p ∈ [2, ∞)a p-harmonic map f:Mm→Nn is a critical point of the p-energy functionalwhere Mm is a compact and Nn a complete Riemannian manifold of dimensions m and n respectively. In a recent paper [3], Takeuchi has proved that for a certain class of simply-connected δ-pinched Nn and certain type of hypersurface Nn in ℝn+1, the only stable p-harmonic maps for any compact Mm are the constant maps. Our purpose in this note is to establish the following theorem which complements Takeuchi's results.

2017 ◽  
Vol 14 (07) ◽  
pp. 1750098 ◽  
Author(s):  
Ahmed Mohammed Cherif

In this paper, we prove that any bi-harmonic map from a compact orientable Riemannian manifold without boundary [Formula: see text] to Riemannian manifold [Formula: see text] is necessarily constant with [Formula: see text] admitting a strongly convex function [Formula: see text] such that [Formula: see text] is a Jacobi-type vector field (or [Formula: see text] admitting a proper homothetic vector field). We also prove that every harmonic map from a complete Riemannian manifold into a Riemannian manifold admitting a proper homothetic vector field, satisfying some condition, is constant. We present an open problem.


2005 ◽  
Vol 16 (09) ◽  
pp. 1017-1031 ◽  
Author(s):  
QUN HE ◽  
YI-BING SHEN

By simplifying the first and the second variation formulas of the energy functional and generalizing the Weitzenböck formula, we study the stability and the rigidity of harmonic maps between Finsler manifolds. It is proved that any nondegenerate harmonic map from a compact Einstein Riemannian manifold with nonnegative scalar curvature to a Berwald manifold with nonpositive flag curvature is totally geodesic and there is no nondegenerate stable harmonic map from a Riemannian unit sphere Sn (n > 2) to any Finsler manifold.


2019 ◽  
pp. 1-15
Author(s):  
Yuan-Jen Chiang

We show that any stable exponentially harmonic map from a compact Riemannian manifold into a compact simply-connected [Formula: see text]-pinched Riemannian manifold under certain circumstance is constant in two different versions. We also prove that a non-constant exponentially harmonic map from a compact hypersurface into a compact Riemannian manifold satisfying certain condition is unstable.


Author(s):  
Qun Chen

AbstractLet M, N be Riemannian manifolds, f: M → N a harmonic map with potential H, namely, a smooth critical point of the functional EH(f) = ∫M[e(f)−H(f)], where e(f) is the energy density of f. Some results concerning the stability of these maps between spheres and any Riemannian manifold are given. For a general class of M, this paper also gives a result on the constant boundary-value problem which generalizes the result of Karcher-Wood even in the case of the usual harmonic maps. It can also be applied to the static Landau-Lifshitz equations.


Author(s):  
H. C. J. Sealey

In (5) it is shown that if m ≽ 3 then there is no non-constant harmonic map φ: ℝm → Sn with finite energy. The method of proof makes use of the fact that the energy functional is not invariant under conformal transformations. This fact has also allowed Xin(9), to show that any non-constant-harmonic map φ:Sm → (N, h), m ≽ 3, is not stable in the sense of having non-negative second variation.


2003 ◽  
Vol 2003 (18) ◽  
pp. 1155-1165 ◽  
Author(s):  
Aurel Bejancu ◽  
Hani Reda Farran

We prove that any simply connected and complete Riemannian manifold, on which a Randers metric of positive constant flag curvature exists, must be diffeomorphic to an odd-dimensional sphere, provided a certain 1-form vanishes on it.


2010 ◽  
Vol 21 (04) ◽  
pp. 475-495 ◽  
Author(s):  
YUXIANG LI ◽  
YOUDE WANG

Let f be a positive smooth function on a closed Riemann surface (M, g). The f-energy of a map u from M to a Riemannian manifold (N, h) is defined as [Formula: see text] and its L2-gradient is: [Formula: see text] We will study the blow-up properties of some approximate f-harmonic map sequences in this paper. For a sequence uk : M → N with ‖τf(uk)‖L2 < C1 and Ef(uk) < C2, we will show that, if the sequence is not compact, then it must blow-up at some critical points of f or some concentrate points of |τf(uk)|2dVg. For a minimizing α-f-harmonic map sequence in some homotopy class of maps from M into N we show that, if the sequence is not compact, the blow-up points must be the minimal point of f and the energy identity holds true.


2012 ◽  
Vol 23 (09) ◽  
pp. 1250095 ◽  
Author(s):  
GUOFANG WANG ◽  
DELIANG XU

In this paper, we study a generalized harmonic map, ϕ-harmonic map, from a smooth metric measure space (M, g, e-ϕ dv) into a Riemannian manifold. We proved various rigidity results for the ϕ-harmonic maps under conditions in terms of the Bakry–Émery Ricci tensor.


2015 ◽  
Vol 26 (06) ◽  
pp. 1541010
Author(s):  
Seiki Nishikawa

Given a smooth map from a compact Riemann surface to a complex manifold equipped with a strongly pseudoconvex complex Finsler metric, we define the [Formula: see text]-energy of the map, whose absolute minimum is attained by a holomorphic map. A harmonic map is then defined to be a stationary map of the [Formula: see text]-energy functional. We prove that with each harmonic map is associated a holomorphic quadratic differential on the domain, which vanishes if the map is weakly conformal. Also, under the condition that the metric be weakly Kähler, we determine the second variation of the functional, and prove that any [Formula: see text]-energy minimizing harmonic map from the Riemann sphere to a weakly Kähler Finsler manifold of positive curvature is either holomorphic or anti-holomorphic.


Sign in / Sign up

Export Citation Format

Share Document