scholarly journals Mathematical modelling of the overflowing cylinder experiment

2003 ◽  
Vol 474 ◽  
pp. 275-298 ◽  
Author(s):  
P. D. HOWELL ◽  
C. J. W. BREWARD

The overflowing cylinder (OFC) is an experimental apparatus designed to generate a controlled straining flow at a free surface, whose dynamic properties may then be investigated. Surfactant solution is pumped up slowly through a vertical cylinder. On reaching the top, the liquid forms a flat free surface which expands radially before over flowing down the side of the cylinder. The velocity, surface tension and surfactant concentration on the expanding free surface are measured using a variety of non-invasive techniques.A mathematical model for the OFC has been previously derived by Breward et al. (2001) and shown to give satisfactory agreement with experimental results. However, a puzzling indeterminacy in the model renders it unable to predict one scalar parameter (e.g. the surfactant concentration at the centre of the cylinder), which must be therefore be taken from the experiments.In this paper we analyse the OFC model asymptotically and numerically. We show that solutions typically develop one of two possible singularities. In the first, the surface concentration of surfactant reaches zero a finite distance from the cylinder axis, while the surface velocity tends to infinity there. In the second, the surfactant concentration is exponentially large and a stagnation point forms just inside the rim of the cylinder. We propose a criterion for selecting the free parameter, based on the elimination of both singularities, and show that it leads to good agreement with experimental results.

Author(s):  
Octavi Sadó Garriga ◽  
Jeffrey M. Falzarano

The purpose of this paper is to combine and extend existing potential flow theory in order to analyze the linear free surface problem of an oscillating water column (OWC) device and apply it to moon pool design. Analytical results were obtained implementing the previously derived theories, and later compared to experimental results conducted at the University of New Orleans Towing Tank. The model tests consisted of a study of a cylindrical OWC. The theoretical and experimental results of the free surface for the OWC tests agree for the resonant frequency estimation response but they disagree on the amplitude of the response.


1975 ◽  
Vol 3 (1) ◽  
pp. 51-68 ◽  
Author(s):  
Thomas G. Smith ◽  
J.O. Wilkes

1968 ◽  
Vol 90 (1) ◽  
pp. 243-253 ◽  
Author(s):  
F. K. Orcutt ◽  
C. W. Ng

Calculated data on steady-state and dynamic properties of the plain cylindrical floating-ring bearing with pressurized lubricant supply are given. The data are for a bearing with L/D of 1, and values of the ratio of inner to outer film clearances of 0.7 and 1.3. One value of dimensionless supply pressure parameter is covered. Experimental results are presented which verify the calculated results and which supplement them, particularly with respect to stability characteristics of the bearing.


2019 ◽  
Vol 263 ◽  
pp. 15-23 ◽  
Author(s):  
Abdulrahman Al-Behadili ◽  
Mathieu Sellier ◽  
James N. Hewett ◽  
Roger I. Nokes ◽  
Miguel Moyers-Gonzalez

2018 ◽  
Vol 10 (9) ◽  
pp. 3005
Author(s):  
Ling-feng Xie ◽  
Shu-liang Zou ◽  
Xiang-yang Li ◽  
Chang-shou Hong ◽  
Hong Wang ◽  
...  

Radon is internationally recognized as one of the seven seismic precursors. A self-assembly ultrasonic generator and experimental apparatus for radon measurement were utilized to explore the radon exhalation regularities of water-bearing porous media under different ultrasonic intensities. The experimental results showed that there was a coupling relationship among radon exhalation rate, moisture content, and ultrasonic frequency. With the increase of the frequency of the ultrasonic wave, its effect on the promotion of radon exhalation rate was found to be a more obviously positive linear correlation. The radon exhalation rate, which could climb to a maximum value of 0.179 Bq·m−2·s−1 in a naturally air-dried sample, increased at first and then decreased along with increased moisture content. Moreover, this study found that the ultrasonic wave had the most remarkable promoting effects on the radon exhalation rate of porous media with high moisture content, and there is a positive linear correlation between the growth rate of the radon exhalation rate and moisture content. The experimental results could provide a beneficial reference for the continual monitoring of radon in a seismically active belt and an explanation of radon anomalies; however, the proposed experimental model was simplified, so further insights are strictly required for a reliable correlation with the real monitoring of radon in a seismically active belt.


2008 ◽  
Vol 18 (1) ◽  
pp. 12421-1-12421-5
Author(s):  
V. Mik ◽  
J. Myska ◽  
Z. Chara ◽  
P. Stern

AbstractEffectiveness of drag reduction by small addition of a surfactant in the turbulent flow of water depends on the structure and concentration of the additive, temperature of the solution and turbulence intensity, possible flow disturbance by a mechanical obstacle and the content of ions in water, but also on the age of the surfactant solution. We show how important aging effects are in connection with total surfactant concentration, in particular how rheological parameters of the drag reducing solution change with time.


2019 ◽  
Vol 140 ◽  
pp. 117-122 ◽  
Author(s):  
Kohei Hamaguchi ◽  
Eiji Hoashi ◽  
Takafumi Okita ◽  
Kenzo Ibano ◽  
Yoshio Ueda

Sign in / Sign up

Export Citation Format

Share Document