The lee-wave régime for a slender body in a rotating flow

1969 ◽  
Vol 36 (2) ◽  
pp. 265-288 ◽  
Author(s):  
John W. Miles

The uniform motion of a closed, axisymmetric body along the axis of an unbounded, rotating, inviscid, incompressible fluid is considered on Long's hypotheses that: the flow is steady; the flow is uniform far upstream of the body; the inertial waves excited by the body cannot propagate upstream. The appropriate similarity parameters arek, an inverse Rossby number based on the body length, and δ, the slenderness ratio of the body. It is conjectured that an upper bound to the parametric régime in which the solution implied by Long's hypotheses remains valid, saykδ≡k<kc, is determined by the first occurrence, with increasingk, of a local reversal of the flow.A general solution for the stream function is established in terms of an assumed distribution of dipoles along the axis of the body. The disturbance upstream of the body is found to be proportional to the product ofk2and the dipole moment (total dipole strength) and to fall off only as the inverse distance, as compared with the inverse cube of the distance for a potential flow. The corresponding wave drag is found to depend on the power spectrum of the dipole distribution in the axial wave-number interval (0,k) and to be a monotonically decreasing function of the axial velocity for fixed angular velocity. Asymptotic solutions for prescribed bodies are established in the following limits: (i)K→ 0 with δ fixed; (ii) δ → 0 withkfixed; (iii)k→ ∞ withkδfixed. Both the upstream disturbance and the wave drag in the limit (i) depend essentially on the dipole moment of the body with respect to a uniform, potential flow. The limit (ii) is analogous to conventional slender-body theory and yields a dipole density that is proportional to the cross-sectional area of the body. The limit (iii) leads to a singular integral equation that is solved to determinekcand the dipole moment for a slender body.The results are applied to a sphere and a slender ellipsoid. The upstream axial velocity and the drag coefficient based on Stewartson's results for a sphere are found to differ significantly from Maxworthy's (1969) measurements, presumably in consequence of viscous separation effects. Maxworthy's measured values of upstream axial velocity are found to agree with the theoretical values for an equivalent ellipsoid, based on the sphere plus its upstream wake, fork[lsim ]kc.

1956 ◽  
Vol 1 (3) ◽  
pp. 337-348 ◽  
Author(s):  
M. J. Lighthill

Ward's slender-body theory of supersonic flow is applied to bodies terminating in either (i) a single trailing edge at right angles to the oncoming supersonic stream, or (ii) two trailing edges at right angles to one another as well as to the oncoming stream, or (iii) a cylindrical section with two or four identical fins equally spaced round it. The wave drag at zero lift, D, is given by the expression $\frac {D}{\frac {1}{2}\rho U^2} &=& \frac {1}{2\pi}\int^l_0 \int^l_0 log\frac{1}{|s-z|}S^{\prime \prime}(s)S^{\prime \prime}(z)dsdz - \\ &-& \frac{S^\prime (l)}{\pi}\int^l_0 log \frac {l}{l-z}S^{\prime \prime}(z)dz + \frac{S^{\prime 2}(l)}{2\pi} \{ log \frac{l}{(M^2-1)^{1|2}b}+k \} $ where l is the length of the body, b the semi-span of the trailing edge (or length of trailing edge of a single fin), and S(z) is the cross-sectional area of the body at a distance z behind the apex. The constant k depends on the distribution of trailing-edge angle along the span for each trailing-edge configuration. In case (i) it is 1·5 for a uniform distribution of trailing-edge angle and 1·64 for an elliptic distribution. In case (ii) it is 1·28 for a uniform distribution and 1·44 for an elliptic distribution. Study of case (iii) indicates that interference effects due to the presence of the body reduce the drag of the fins. For example, with a uniform distribution of trailing-edge angle, k for two fins falls from 1·5 in the absence of a body to 1·06 when the body radius equals the trailing-edge semi-span, while k for four fins falls from 1·28 to 0·45 under the same conditions.Where ordinary finite-wing theory is applicable, the present method must agree with it for small $(M^2-1)^{1|2}b|l$, and this is confirmed by two examples (§3), but within the limit imposed by slenderness the present method is of course more widely applicable, as well as simpler, than finite-wing theory.It is not known experimentally whether slender-body theory gives accurate predictions of drag at zero lift, for the shapes here discussed, under the conditions for which on theoretical grounds it might be expected to do so. It should be noted that, although tests have not yet been made on ideally suitable bodies, no clear the drag is therefore twice that of a wing made up of two of them. The final stages of the process cannot be represented by slender-body theory, but the initial trend may well be indicated fairly accurately.


1976 ◽  
Vol 75 (4) ◽  
pp. 705-714 ◽  
Author(s):  
Joseph B. Keller ◽  
Sol I. Rubinow

Slow flow of a viscous incompressible fluid past a slender body of circular crosssection is treated by the method of matched asymptotic expansions. The main result is an integral equation for the force per unit length exerted on the body by the fluid. The novelty is that the body is permitted to twist and dilate in addition to undergoing the translating, bending and stretching, which have been considered by others. The method of derivation is relatively simple, and the resulting integral equation does not involve the limiting processes which occur in the previous work.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Q. X. Wang ◽  
S. K. Tan

A slender body of revolution berthing to a wall is studied by extending the classical slender body theory. This topic is of practical importance for a ship berthing to a quay wall. The flow problem is solved analytically using the method of matched asymptotic expansions. The lateral force and yaw moment on the body are obtained in a closed form too. The translation and yawing of the body are modeled using the second Newton law and coupled with the flow induced. Numerical analyses are performed for the dynamic lateral translation and yawing of a slender spheroid, while its horizontal translation parallel to the wall is prescribed at zero speed, constant speed, and time varying speed, respectively. The analysis reveals the interesting dynamic features of the translation and yawing of the body in terms of the forward speed and starting angle of yaw of the body.


1963 ◽  
Vol 17 (2) ◽  
pp. 285-304 ◽  
Author(s):  
John P. Moran

A systematic procedure is presented for the determination of uniformly valid successive approximations to the axisymmetric incompressible potential flow about elongated bodies of revolution meeting certain shape requirements. The presence of external disturbances moving with respect to the body under study is admitted. The accuracy of the procedure and its extension beyond the scope of the present study—e.g. to problems in plane flow - are discussed.


1984 ◽  
Vol 28 (01) ◽  
pp. 55-64
Author(s):  
Colen Kennell ◽  
Allen Plotkin

This research addresses the potential flow about a thin two-dimensional hydrofoil moving with constant velocity at a fixed depth beneath a free surface. The thickness-to-chord ratio of the hydrofoil and disturbances to the free stream are assumed to be small. These small perturbation assumptions are used to produce first-and second-order subproblems structured to provide consistent approximations to boundary conditions on the body and the free surface. Nonlinear corrections to the free-surface boundary condition are included at second order. Each subproblem is solved by a distribution of sources and vortices on the chord line and doublets on the free surface. After analytic determination of source and doublet strengths, a singular integral equation for the vortex strength is derived. This integral equation is reduced to a Fredholm integral equation which is solved numerically. Lift, wave drag, and free-surface shape are calculated for a flat plate and a Joukowski hydrofoil. The importance of free-surface effects relative to body effects is examined by a parametric variation of Froude number and depth of submergence.


2018 ◽  
Vol 856 ◽  
pp. 870-897 ◽  
Author(s):  
D. R. Hewitt ◽  
N. J. Balmforth

The theory of slow viscous flow around a slender body is generalized to the situation where the ambient fluid has a yield stress. The local flow around a cylinder that is moving along or perpendicular to its axis, and rotating, provides a first step in this theory. Unlike for a Newtonian fluid, the nonlinearity associated with the viscoplastic constitutive law precludes one from linearly superposing solutions corresponding to each independent component of motion, and instead demands a full numerical approach to the problem. This is accomplished for the case of a Bingham fluid, along with a consideration of some asymptotic limits in which analytical progress is possible. Since the yield stress of the fluid strongly localizes the flow around the body, the leading-order slender-body approximation is rendered significantly more accurate than the equivalent Newtonian problem. The theory is applied to the sedimentation of inclined cylinders, bent rods and helices, and compared with some experimental data. Finally, the theory is applied to the locomotion of a cylindrical filament driven by helical waves through a viscoplastic fluid.


1975 ◽  
Vol 67 (4) ◽  
pp. 817-827 ◽  
Author(s):  
James Geer

The general problem of potential flow past a slender body of revolution is considered. The flow incident on the body is described by an arbitrary potential function and hence the results presented here extend those obtained by Handels-man & Keller (1967 α). The part of the potential due to the presence of the body is represented as a superposition of potentials due to point singularities (sources, dipoles and higher-order singularities) distributed along a segment of the axis of the body inside the body. The boundary condition on the body leads to a linear integral equation for the density of the singularities. The complete uniform asymptotic expansion of the solution of this equation, as well as the extent of the distribution, is obtained using the method of Handelsman & Keller. The special case of transverse incident flow is considered in detail. Complete expansions for the dipole moment of the distribution and the virtual mass of the body are obtained. Some general comments on the method of Handelsman & Keller are given, and may be useful to others wishing to use their method.


1967 ◽  
Vol 28 (1) ◽  
pp. 131-147 ◽  
Author(s):  
Richard A. Handelsman ◽  
Joseph B. Keller

Axially symmetric potential flow about an axially symmetric rigid body is considered. The potential due to the body is represented as a superposition of potentials of point sources distributed along a segment of the axis inside the body. The source strength distribution satisfies a linear integral equation. A complete uniform asymptotic expansion of its solution is obtained with respect to the slenderness ratio ε½, which is the maximum radius of the body divided by its length. The expansion contains integral powers of ε multiplied by powers of log ε. From it expansions of the potential, the virtual mass and the dipole moment of the body are obtained. The flow about the body in the presence of an axially symmetric stationary obstacle is also determined. The method of analysis involves a technique for the asymptotic solution of integral equations.


1976 ◽  
Vol 78 (3) ◽  
pp. 577-600 ◽  
Author(s):  
James Geer

The complete uniform asymptotic expansion of the velocity and pressure fields for Stokes flow past a slender body of revolution is obtained with respect to the slenderness ratio ε of the body. A completely general incident Stokes flow is assumed and hence these results extend the special cases treated by Tillett (1970) and Cox (1970). The part of the flow due to the presence of the body is represented as a superposition of the flows produced by three types of singularity distributed with unknown densities along a portion of the axis of the body and lying entirely inside the body. The no-slip boundary condition on the body then leads to a system of three coupled, linear, integral equations for the densities of the singularities. The complete expansion for these densities is then found as a series in powers of ε and ε log ε. It is found that the extent of these distributions of singularities inside the body is the same for all the singular flows and depends only upon the geometry of the body. The total force, drag and torque experienced by the body are computed.


Sign in / Sign up

Export Citation Format

Share Document