Discovery of Paragonimus skrjabini in Vietnam and its phylogenetic status in the Paragonimus skrjabini complex

2012 ◽  
Vol 87 (4) ◽  
pp. 450-456 ◽  
Author(s):  
P.N. Doanh ◽  
H.V. Hien ◽  
N. Nonaka ◽  
Y. Horii ◽  
Y. Nawa

AbstractTwo members of the Paragonimus skrjabini complex, P. skrjabini and P. miyazakii, are now considered as two sub-species, P. skrjabini skrjabini and P. skrjabini miyazakii. They are well known as important pathogens for human paragonimiasis in China and Japan. Recently, members of this species complex have been reported from India. Here we report the first discovery of P. skrjabini from freshwater crab hosts in Thanh Hoa province, Vietnam. For morphological and molecular phylogenetic studies, adult worms were obtained by experimental infection in cats and dogs. Molecular analyses of metacercariae and adults revealed that the P. skrjabini population from Thanh Hoa, Vietnam was almost completely identical with that from Yunnan province, China. Those populations from Thanh Hoa, Vietnam and Yunnan, China and those from Manipur, India were significantly different from P. skrjabini populations reported from other localities of China in cytochrome oxidase subunit 1 (CO1) gene sequences, indicating considerable genetic variation within the P. skrjabini complex. Moreover, low bootstrap values in the CO1 tree suggested that more variant genotypes belonging to P. skrjabini complex may be found in other Asian countries in between Vietnam and India, such as Myanmar, Laos and Thailand. Since P. skrjabini is known as a pathogen for humans, paragonimiasis cases caused by P. skrjabini might be found in Vietnam and other Asian countries.

2007 ◽  
Vol 20 (2) ◽  
pp. 161 ◽  
Author(s):  
Frederik Leliaert ◽  
Eric Coppejans

Boodlea composita (Harvey) F. Brand and Phyllodictyon anastomosans (Harvey) Kraft & M.J. Wynne, two widespread tropical siphonocladalean green algae, have had a long and confusing history because of the vague taxonomic boundaries between the two species. Molecular phylogenetic studies on the basis of nuclear-encoded rDNA sequences have resolved these indistinct species boundaries and suggest these taxa are part of a species complex. Detailed morphological investigations in combination with field and culture observations show that the concept of traditionally recognised taxa in this species complex is clouded by an ecologically induced phenotypic plasticity and developmental variability. Examination of a large number of specimens of B. composita, P. anastomosans and morphologically allied taxa including Boodlea siamensis Reinbold, Boodlea montagnei (Harvey ex J.E. Gray) Egerod, Nereodictyon imitans Gerloff and Struveopsis siamensis (Egerod) P. C. Silva, worldwide, including types, shows a wide morphological variety. We recognise seven more or less distinct morphological entities based on differences in thallus architectures, branching systems, cell dimensions and tenacular cell types. Awaiting the recovery of the true nature of the defined entities in this species complex (different species or growth forms of the same species), they are referred to as morphotypes, i.e. making no assumptions as to which taxonomic level they best apply.


2012 ◽  
Vol 87 (2) ◽  
pp. 141-146 ◽  
Author(s):  
P.N. Doanh ◽  
H.V. Hien ◽  
N. Nonaka ◽  
Y. Horii ◽  
Y. Nawa

AbstractAmong about 50 nominal Paragonimus species, Paragonimus proliferus is rather a rare species, found only in Yunnan province, China, until our recent discovery of this species in Lai Chau province, northern Vietnam close to Yunnan, China. Here we add Quang Binh province, central Vietnam as a new endemic area of P. proliferus. Large excysted metacercariae found in mountainous crabs, Potamiscus tannanti, were morphologically identified as P. proliferus, which was confirmed further by molecular analyses. Second internal transcribed spacer (ITS2) sequences of the P. proliferus population in Quang Binh province were completely (100%) identical with those of P. proliferus populations in Lai Chau province, northern Vietnam and Yunnan province, China. However, cytochrome oxidase subunit 1 (CO1) gene sequences of Quang Binh population were significantly different (5.6%) from that of previously reported northern Vietnam and Yunnan, China populations. A phylogenetic tree revealed that all CO1 sequences of P. proliferus Quang Binh population formed a distinct group, which was clustered with northern Vietnam and Yunnan, China populations with the bootstrap value of 75%. This is the first record of the genetically variant population of P. proliferus, distribution of which is geographically remote from the previously reported endemic areas in the border between northern Vietnam and Yunnan, China, suggesting that P. proliferus may be much more widely distributed in the Indochina peninsula (or South-East Asia) than expected.


Author(s):  
D. G. Melnikov ◽  
L. I. Krupkina

Based on the published data of molecular phylogenetic studies of the tribe Cariceae Dumort. genera (Cyperaceae), obtained by an international collaboration (The Global Carex Group, 2016; et al.), and morphological characters of the genera (Kukkonen, 1990; and others), new nomenclatural combinations and replacement names in the genus Carex L. are published for 11 species, one subspecies and two sections previously included in the genus Kobresia Willd.


Author(s):  
Richard W. Jobson ◽  
Paulo C. Baleeiro ◽  
Cástor Guisande

Utricularia is a morphologically and ecologically diverse genus currently comprising more than 230 species divided into three subgenera—Polypompholyx, Utricularia, and Bivalvaria—and 35 sections. The genus is distributed worldwide except on the poles and most oceanic islands. The Neotropics has the highest species diversity, followed by Australia. Compared to its sister genera, Utricularia has undergone greater rates of speciation, which are linked to its extreme morphological flexibility that has resulted in the evolution of habitat-specific forms: terrestrial, rheophytic, aquatic, lithophytic, and epiphytic. Molecular phylogenetic studies have resolved relationships for 44% of the species across 80% of the sections. Scant data are available for phylogeography or population-level processes such as gene flow, hybridization, or pollination. Because nearly 90% of the species are endemics, data are urgently needed to determine how to protect vulnerable species and their habitats.


2021 ◽  
Vol 7 (12) ◽  
pp. eabe2741
Author(s):  
Paschalia Kapli ◽  
Paschalis Natsidis ◽  
Daniel J. Leite ◽  
Maximilian Fursman ◽  
Nadia Jeffrie ◽  
...  

The bilaterally symmetric animals (Bilateria) are considered to comprise two monophyletic groups, Protostomia (Ecdysozoa and the Lophotrochozoa) and Deuterostomia (Chordata and the Xenambulacraria). Recent molecular phylogenetic studies have not consistently supported deuterostome monophyly. Here, we compare support for Protostomia and Deuterostomia using multiple, independent phylogenomic datasets. As expected, Protostomia is always strongly supported, especially by longer and higher-quality genes. Support for Deuterostomia, however, is always equivocal and barely higher than support for paraphyletic alternatives. Conditions that cause tree reconstruction errors—inadequate models, short internal branches, faster evolving genes, and unequal branch lengths—coincide with support for monophyletic deuterostomes. Simulation experiments show that support for Deuterostomia could be explained by systematic error. The branch between bilaterian and deuterostome common ancestors is, at best, very short, supporting the idea that the bilaterian ancestor may have been deuterostome-like. Our findings have important implications for the understanding of early animal evolution.


2021 ◽  
Vol 59 (7) ◽  
pp. 1583-1588
Author(s):  
Farnaz Ebrahimipour ◽  
Nasrullah Rastegar‐Pouyani ◽  
Eskandar Rastegar‐Pouyani ◽  
Seyyed Saeed Hosseinian Yousefkhani ◽  
Kamran Kamali

ISRN Zoology ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Hiroko Somura ◽  
Hiroshi Hori ◽  
Yoshinobu Manome

The slow loris (Nycticebus) is a prosimian that is popular among exotic pet lovers. In Japan, many slow lorises have been imported illegally. Prosimians that have been confiscated in raids are protected in Japanese zoos, and the number of such animals has increased. In most cases, the country of origin remains unknown and even the species can be difficult to identify from the animal’s physical appearance alone. We have attempted to resolve this problem by using DNA analysis. DNA samples of five species, consisting of the Pygmy slow loris (Nycticebus pygmaeus), Bengal slow loris (Nycticebus bengalensis), Sunda slow loris (Nycticebus coucang), Javan slow loris (Nycticebus javanicus), and Bornean slow loris (Nycticebus menagensis), were extracted, amplified, and the nucleotide sequences of mitochondrial 12S rRNA, 16S rRNA, and the cytochrome oxidase subunit 1(COI) regions were compared. Differences of nucleic acid sequences of representative individuals were demonstrated.


Phytotaxa ◽  
2016 ◽  
Vol 263 (2) ◽  
pp. 98 ◽  
Author(s):  
JULIA FERM ◽  
JESPER KÅREHED ◽  
BIRGITTA BREMER ◽  
SYLVAIN G. RAZAFIMANDIMBISON

The Malagasy genus Carphalea (Rubiaceae) consists of six species (C. angulata, C. cloiselii, C. kirondron, C. linearifolia, C. madagascariensis, C. pervilleana) of shrubs or small trees and is recognizable by a distinctly lobed calyx, 2(–4)-locular ovaries, each locule with several ovules on a rod-like stalk arising from the base of the locule, and indehiscent fruits. Carphalea linearifolia, rediscovered in 2010, has not previously been included in any Rubiaceae molecular phylogenetic studies. We re-investigated the monophyly of Carphalea using sequence data from chloroplast (rps16 and trnT-F) and nuclear (ITS and ETS) markers analysed with parsimony and Bayesian methods. Carphalea linearifolia forms a clade with C. cloiselii and the type species C. madagascariensis. This clade is sister to a clade consisting of the rest of the Carphalea species plus the genus Triainolepis. According to these results, the new genus Paracarphalea is here described to accommodate Carphalea angulata, C. kirondron, and C. pervilleana. The conservation status of Carphalea linearifolia is assessed as critically endangered according to IUCN criteria.


Sign in / Sign up

Export Citation Format

Share Document